scholarly journals Universal entropy and hawking radiation of near-extremal AdS4 black holes

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Marina David ◽  
Jun Nian

Abstract We compute the Bekenstein-Hawking entropy of near-extremal asymptotically AdS4 electrically charged rotating black holes using three different methods: (i) from the gravity solution, (ii) from the near-horizon Kerr/CFT correspondence and (iii) from the boundary conformal field theory. The results from these three different approaches match exactly, giving us a unique and universal expression for the entropy and the microstate counting of near-extremal AdS black holes via the AdS/CFT correspondence. In the second method, we extend the Kerr/CFT correspondence to the near-extremal case to compute the left and right central charges. We also use hidden conformal symmetry of the near-horizon geometry to compute the Frolov-Thorne temperatures. From the results of the near-extremal AdS4 black hole entropy, we provide a microscopic foundation for Hawking radiation.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Laura Donnay ◽  
Gaston Giribet ◽  
Julio Oliva

Abstract We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with softly decaying hair. We consider a set of asymptotic conditions that permits such decaying near the boundary, and which, in addition to the local conformal symmetry, is preserved by an extra local current. The corresponding algebra of diffeomorphisms consists of two copies of Virasoro algebra in semi-direct sum with an infinite-dimensional Abelian ideal. We then reorient the analysis to the near horizon region, where infinite-dimensional symmetries also appear. The supertranslation symmetry at the horizon yields an infinite set of non-trivial charges, which we explicitly compute. The zero-mode of these charges correctly reproduces the black hole entropy. In contrast to Einstein gravity, in the higher-derivative theory subleading terms in the near horizon expansion contribute to the near horizon charges. Such terms happen to capture the higher-curvature corrections to the Bekenstein area law.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Tong-Tong Hu ◽  
Shuo Sun ◽  
Hong-Bo Li ◽  
Yong-Qiang Wang

Abstract Motivated by the recent studies of the novel asymptotically global $$\hbox {AdS}_4$$AdS4 black hole with deformed horizon, we consider the action of Einstein–Maxwell gravity in AdS spacetime and construct the charged deforming AdS black holes with differential boundary. In contrast to deforming black hole without charge, there exists at least one value of horizon for an arbitrary temperature. The extremum of temperature is determined by charge q and divides the range of temperature into several parts. Moreover, we use an isometric embedding in the three-dimensional space to investigate the horizon geometry. The entropy and quasinormal modes of deforming charged AdS black hole are also studied in this paper. Due to the existence of charge q, the phase diagram of entropy is more complicated. We consider two cases of solutions: (1) fixing the chemical potential $$\mu $$μ; (2) changing the value of $$\mu $$μ according to the values of horizon radius and charge. In the first case, it is interesting to find there exist two families of black hole solutions with different horizon radii for a fixed temperature, but these two black holes have same horizon geometry and entropy. The second case ensures that deforming charged AdS black hole solutions can reduce to standard RN–AdS black holes.


2019 ◽  
Vol 51 (11) ◽  
Author(s):  
M. F. A. R. Sakti ◽  
A. M. Ghezelbash ◽  
A. Suroso ◽  
F. P. Zen

2001 ◽  
Vol 64 (4) ◽  
Author(s):  
Samuli Hemming ◽  
Esko Keski-Vakkuri

2018 ◽  
Vol 168 ◽  
pp. 01011
Author(s):  
Chiang-Mei Chen ◽  
Sang Pyo Kim ◽  
Jia-Rui Sun ◽  
Fu-Yi Tang

The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.


2010 ◽  
Vol 27 (9) ◽  
pp. 095018 ◽  
Author(s):  
Veronika E Hubeny ◽  
Donald Marolf ◽  
Mukund Rangamani

2019 ◽  
Vol 16 (10) ◽  
pp. 1950156
Author(s):  
Carlos Castro Perelman

After a brief review of the thermal relativistic corrections to the Schwarzschild black hole entropy, it is shown how the Stefan–Boltzman law furnishes large modifications to the evaporation times of Planck-size mini-black holes, and which might furnish important clues to the nature of dark matter and dark energy since one of the novel consequences of thermal relativity is that black holes do not completely evaporate but leave a Planck size remnant. Equating the expression for the modified entropy (due to thermal relativity corrections) with Wald’s entropy should, in principle, determine the functional form of the modified gravitational Lagrangian [Formula: see text]. We proceed to derive the generalized uncertainty relation which corresponds to the effective temperature [Formula: see text] associated with thermal relativity and given in terms of the Hawking ([Formula: see text]) and Planck ([Formula: see text]) temperature, respectively. Such modified uncertainty relation agrees with the one provided by string theory up to first order in the expansion in powers of [Formula: see text]. Both lead to a minimal length (Planck size) uncertainty. Finally, an explicit analytical expression is found for the modifications to the purely thermal spectrum of Hawking radiation which could cast some light into the resolution of the black hole information paradox.


2020 ◽  
Vol 953 ◽  
pp. 114970
Author(s):  
M.F.A.R. Sakti ◽  
A.M. Ghezelbash ◽  
A. Suroso ◽  
F.P. Zen

Sign in / Sign up

Export Citation Format

Share Document