scholarly journals Wormholes in Wyman's solution

2014 ◽  
Vol 23 (11) ◽  
pp. 1450086 ◽  
Author(s):  
J. B. Formiga ◽  
T. S. Almeida

The most general solution of the Einstein field equations coupled with a massless scalar field is known as Wyman's solution. This solution is also present in the Brans–Dicke theory and, due to its importance, it has been studied in detail by many authors. However, this solutions has not been studied from the perspective of a possible wormhole. In this paper, we perform a detailed analysis of this issue. It turns out that there is a wormhole. Although we prove that the so-called throat cannot be traversed by human beings, it can be traversed by particles and bodies that can last long enough.

2005 ◽  
Vol 14 (06) ◽  
pp. 1049-1061 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
J. F. VILLAS DA ROCHA ◽  
ANZHONG WANG

All the (2+1)-dimensional circularly symmetric solutions with kinematic self-similarity of the second kind to the Einstein-massless-scalar field equations are found and their local and global properties are studied. It is found that some of them represent gravitational collapse of a massless scalar field, in which black holes are always formed.


2006 ◽  
Vol 15 (04) ◽  
pp. 545-557 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA

The (2+1)-dimensional geodesic circularly symmetric solutions of Einstein-massless-scalar field equations with negative cosmological constant are found and their local and global properties are studied. It is found that one of them represents gravitational collapse where black holes are always formed.


The internal structure of a charged spherical black hole is still a topic of debate. In a non-rotating but aspherical gravitational collapse to form a spherical charged black hole, the backscattered gravitational wave tails enter the black hole and are blueshifted at the Cauchy horizon. This has a catastrophic effect if combined with an outflux crossing the Cauchy horizon: a singularity develops at the Cauchy horizon and the effective mass inflates. Recently, a numerical study of a massless scalar field in the Reissner-Nordström background suggested that a spacelike singularity may form before the Cauchy horizon forms. We will show that there exists an approximate analytic solution of the scalar-field equations which allows the mass-inflation singularity at the Cauchy horizon to exist. In particular, we see no evidence that the Cauchy horizon is preceded by a spacelike singularity.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Fabrizio Canfora

AbstractAn infinite-dimensional family of analytic solutions in pure SU(2) Yang–Mills theory at finite density in $$(3+1)$$ ( 3 + 1 ) dimensions is constructed. It is labelled by two integeres (p and q) as well as by a two-dimensional free massless scalar field. The gauge field depends on all the 4 coordinates (to keep alive the topological charge) but in such a way to reduce the (3+1)-dimensional Yang–Mills field equations to the field equation of a 2D free massless scalar field. For each p and q, both the on-shell action and the energy-density reduce to the action and Hamiltonian of the corresponding 2D CFT. The topological charge density associated to the non-Abelian Chern–Simons current is non-zero. It is possible to define a non-linear composition within this family as if these configurations were “Lego blocks”. The non-linear effects of Yang–Mills theory manifest themselves since the topological charge density of the composition of two solutions is not the sum of the charge densities of the components. This leads to an upper bound on the amplitudes in order for the topological charge density to be well-defined. This suggests that if the temperature and/or the energy is/are high enough, the topological density of these configurations is not well-defined anymore. Semiclassically, one can show that (depending on whether the topological charge is even or odd) some of the operators appearing in the 2D CFT should be quantized as Fermions (despite the Bosonic nature of the classical field).


2019 ◽  
Vol 34 (11) ◽  
pp. 1950066 ◽  
Author(s):  
Can Aktaş

In this research, we have investigated the behavior of massive and massless scalar field (SF) models (normal and phantom) for Kaluza–Klein universe in [Formula: see text] gravity with cosmological term ([Formula: see text]). To obtain field equations, we have used [Formula: see text] model given by Harko et al. [Phys. Rev. D 84, 024020 (2011)] and anisotropy feature of the universe. Finally, we have discussed our results in [Formula: see text] and General Relativity Theory (GRT) with various graphics.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050132
Author(s):  
Dog̃ukan Taṣer ◽  
Melis Ulu Dog̃ru

In this study, we investigated scalar field in [Formula: see text]-gravity by using LRS Bianchi type-I universe. Massless and massive scalar field models are separately constructed in [Formula: see text]-gravity. Massless scalar field models are examined in the cases of constant and exponential potential fields. For all models, solutions of field equations are obtained under the consideration of [Formula: see text]. [Formula: see text] functions for each model are separately attained in theory. It is shown that constructed models in the presence of massless scalar field permit quintessence scalar field. Also, it is observed that each model indicates expanding universe with deceleration. Also, kinematical quantities are analyzed in the light of obtained solutions. All models are concluded with a geometric and physical perspective.


Author(s):  
Andrea Anselli

The aim of this paper is to introduce and justify a possible generalization of the classic Bach field equations on a four-dimensional smooth manifold [Formula: see text] in the presence of field [Formula: see text], given by a smooth map with source [Formula: see text] and target another Riemannian manifold. Those equations are characterized by the vanishing of a two times covariant, symmetric, traceless and conformally invariant tensor field, called [Formula: see text]-Bach tensor, that in absence of the field [Formula: see text] reduces to the classic Bach tensor, and by the vanishing another tensor related to the bi-energy of [Formula: see text]. Since solutions of the Einstein-massless scalar field equations, or more generally, of the Einstein field equations with source the wave map [Formula: see text] solves those generalized Bach’s equations, we include the latter in our analysis providing a systematic study for them, relying on the recent concept of [Formula: see text]-curvatures. We take the opportunity to discuss the related topic of warped product solutions.


2009 ◽  
Vol 24 (30) ◽  
pp. 2425-2432 ◽  
Author(s):  
MARCO FRASCA

We analyze a recent proposal to map a massless scalar field theory onto a Yang–Mills theory at classical level. It is seen that this mapping exists at a perturbative level when the expansion is a gradient expansion. In this limit the theories share the spectrum, at the leading order, that is the one of a harmonic oscillator. Gradient expansion is exploited maintaining Lorentz covariance by introducing a fifth coordinate and turning the theory to Euclidean space. These expansions give common solutions to scalar and Yang–Mills field equations that are so proved to exist by construction, confirming that the selected components of the Yang–Mills field are indeed an extremum of the corresponding action functional.


Sign in / Sign up

Export Citation Format

Share Document