Study of a quadratic redshift-based correction in f(R) gravity with Baryonic matter

2015 ◽  
Vol 24 (11) ◽  
pp. 1550091 ◽  
Author(s):  
Mozhgan Masoudi ◽  
Reza Saffari

This paper is considered as a second-order redshift-based corrections in derivative of modified gravitational action, f(R), to explain the late time acceleration which is appeared by Supernova Type Ia (SNeIa) without considering the dark components. Here, we obtained the cosmological dynamic parameters of universe for this redshift depended corrections. Next, we used the recent data of SNeIa Union2, shift parameter of the cosmic background radiation, Baryon acoustic oscillation from sloan digital sky survey (SDSS), and combined analysis of these observations to put constraints on the parameters of the selected F(z) model. It is very interesting that the well-known age problem of the three old objects for combined observations can be alleviated in this model. Finally, the reference action will be constructed in terms of its Taylor expansion. Also, we show that the reconstructed action definitely pass the solar system and stability of the cosmological solution tests.

2010 ◽  
Vol 25 (36) ◽  
pp. 3033-3046 ◽  
Author(s):  
JIANBO LU ◽  
YABO WU ◽  
LIXIN XU

The kinematical model j(z) = j0and dynamical model wde(z) = w0, are constrained from the latest observational data: Union2 data including 557 type Ia supernovae (SNIa), 15 observational Hubble data (OHD), baryon acoustic oscillation (BAO) data from Sloan Digital Sky Survey (SDSS) and Two-degree Field Galaxy Redshift Survey (2dFGRS) and CMB data from seven-year WMAP. We get the current values of deceleration parameter q0, jerk parameter j0, dimensionless matter density Ωm, equation of state for dark energy w0and transition redshift zT. Furthermore, it is shown that for both kinematical and dynamical models, the constraint results support for the cosmic concordance model, ΛCDM.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Debabrata Adak

AbstractWe study the observational aspects of Einstein Yang Mills Higgs dark energy model and constrain the parameters space from the latest observational data from type Ia supernovae, observational Hubble data, baryon acoustic oscillation data and cosmic microwave background radiation shift parameter data. It is found from the analysis of data that the Higgs field in presence of gauge fields can successfully describe the present accelerated expansion of the universe consistent with the astrophysical observations.


2020 ◽  
Vol 499 (1) ◽  
pp. 269-291 ◽  
Author(s):  
Alex Smith ◽  
Etienne Burtin ◽  
Jiamin Hou ◽  
Richard Neveux ◽  
Ashley J Ross ◽  
...  

ABSTRACT The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock–Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey (SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 quasar clustering sample, in configuration and Fourier space, using a series of halo occupation distribution mock catalogues generated using the OuterRim N-body simulation. We test three models on a series of non-blind mocks, in the OuterRim cosmology, and blind mocks, which have been rescaled to new cosmologies, and investigate the effects of redshift smearing and catastrophic redshifts. We find that for the non-blind mocks, the models are able to recover fσ8 to within 3 per cent and α∥ and α⊥ to within 1 per cent. The scatter in the measurements is larger for the blind mocks, due to the assumption of an incorrect fiducial cosmology. From this mock challenge, we find that all three models perform well, with similar systematic errors on fσ8, α∥, and α⊥ at the level of $\sigma _{f\sigma _8}=0.013$, $\sigma _{\alpha _\parallel }=0.012$, and $\sigma _{\alpha _\bot }=0.008$. The systematic error on the combined consensus is $\sigma _{f\sigma _8}=0.011$, $\sigma _{\alpha _\parallel }=0.008$, and $\sigma _{\alpha _\bot }=0.005$, which is used in the final DR16 analysis. For baryon acoustic oscillation fits in configuration and Fourier space, we take conservative systematic errors of $\sigma _{\alpha _\parallel }=0.010$ and $\sigma _{\alpha _\bot }=0.007$.


2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


2020 ◽  
Vol 493 (3) ◽  
pp. 4078-4093 ◽  
Author(s):  
Samuel R Hinton ◽  
Cullan Howlett ◽  
Tamara M Davis

ABSTRACT We compare the performance of four state-of-the-art models for extracting isotropic measurements of the baryon acoustic oscillation (BAO) scale. To do this, we created a new, public, modular code barry, which contains data sets, model fitting tools, and model implementations incorporating different descriptions of non-linear physics and algorithms for isolating the BAO feature. These are then evaluated for bias, correlation, and fitting strength using mock power spectra and correlation functions developed for the Sloan Digital Sky Survey Data Release 12. Our main findings are as follows: (1) all of the models can recover unbiased constraints when fit to the pre- and post-reconstruction simulations. (2) Models that provide physical descriptions of the damping of the BAO feature (using e.g. standard perturbation or effective-field theory arguments) report smaller errors on average, although the distribution of mock χ2 values indicates these are underestimated. (3) Allowing the BAO damping scale to vary can provide tighter constraints for some mocks, but is an artificial improvement that only arises when noise randomly sharpens the BAO peak. (4) Unlike recent claims in the literature when utilizing a BAO Extractor technique, we find no improvement in the accuracy of the recovered BAO scale. (5) We implement a procedure for combining all models into a single consensus result that improves over the standard method without obviously underestimating the uncertainties. Overall, barry provides a framework for performing the cosmological analyses for upcoming surveys, and for rapidly testing and validating new models.


2019 ◽  
Vol 629 ◽  
pp. A86 ◽  
Author(s):  
Michael Blomqvist ◽  
Hélion du Mas des Bourboux ◽  
Nicolás G. Busca ◽  
Victoria de Sainte Agathe ◽  
James Rich ◽  
...  

We present a measurement of the baryon acoustic oscillation (BAO) scale at redshift z = 2.35 from the three-dimensional correlation of Lyman-α (Lyα) forest absorption and quasars. The study uses 266 590 quasars in the redshift range 1.77 <  z <  3.5 from the Sloan Digital Sky Survey (SDSS) Data Release 14 (DR14). The sample includes the first two years of observations by the SDSS-IV extended Baryon Oscillation Spectroscopic Survey (eBOSS), providing new quasars and re-observations of BOSS quasars for improved statistical precision. Statistics are further improved by including Lyα absorption occurring in the Lyβ wavelength band of the spectra. From the measured BAO peak position along and across the line of sight, we determined the Hubble distance DH and the comoving angular diameter distance DM relative to the sound horizon at the drag epoch rd: DH(z = 2.35)/rd = 9.20 ± 0.36 and DM(z = 2.35)/rd = 36.3 ± 1.8. These results are consistent at 1.5σ with the prediction of the best-fit spatially-flat cosmological model with the cosmological constant reported for the Planck (2016) analysis of cosmic microwave background anisotropies. Combined with the Lyα auto-correlation measurement presented in a companion paper, the BAO measurements at z = 2.34 are within 1.7σ of the predictions of this model.


2003 ◽  
Vol 599 (1) ◽  
pp. L33-L36 ◽  
Author(s):  
Darren S. Madgwick ◽  
Paul C. Hewett ◽  
Daniel J. Mortlock ◽  
Lifan Wang

2007 ◽  
Vol 381 (3) ◽  
pp. 1053-1066 ◽  
Author(s):  
Will J. Percival ◽  
Shaun Cole ◽  
Daniel J. Eisenstein ◽  
Robert C. Nichol ◽  
John A. Peacock ◽  
...  

2011 ◽  
Vol 731 (1) ◽  
pp. 42 ◽  
Author(s):  
K. Simon Krughoff ◽  
Andrew J. Connolly ◽  
Joshua Frieman ◽  
Mark SubbaRao ◽  
Gary Kilper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document