scholarly journals Gravity in a warped 6D world with an extra 2D sphere

2019 ◽  
Vol 28 (02) ◽  
pp. 1950029
Author(s):  
Akira Kokado ◽  
Takesi Saito

Corrections to Newton’s inverse law have been so far considered, but not clear in warped higher dimensional worlds, because of complexity of the Einstein equation. Here, we give a model of a warped 6D world with an extra 2D sphere. We take a general energy–momentum tensor, which does not depend on a special choice of bulk matter fields. The 6D Einstein equation reduces to the spheroidal differential equation, which can be easily solved. The gravitational potential in our 4D universe is calculated to be composed of infinite series of massive Yukawa potentials coming from the KK mode, together with Newton’s inverse law. The series of Yukawa type potentials converges well to behave as [Formula: see text] near [Formula: see text].

2011 ◽  
Vol 03 ◽  
pp. 434-445
Author(s):  
EUGÊNIO R. BEZERRA DE MELLO ◽  
ARAM A. SAHARIAN

In this paper we analyze the vacuum expectation values of the field squared and the energy-momentum tensor associated to a massive scalar field in a higher dimensional cosmic string spacetime, obeying Dirichlet or Neumann boundary conditions on the surface orthogonal to the string.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040030
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

We consider the gravity-induced effects associated with a massless scalar field living in a higher-dimensional spacetime being the tensor product of Minkowski space and spherically-symmetric space with angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole or cosmic string with flat extra dimensions, where the deficit of solid angle is proportional to Newton constant and tension. Thus, we refer to them as conical backgrounds. In terms of the angular deficit value, we derive the perturbative expression for the scalar Green’s function and compute it to the leading order. With the use of this Green’s function we compute the renormalized vacuum expectation value of the scalar-field’s energy-momentum tensor. We make some general note on the linear-on-curvature part of the trace of even coefficients of Schwinger-deWitt expansion.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
G. A. Carvalho ◽  
F. Rocha ◽  
H. O. Oliveira ◽  
R. V. Lobato

AbstractThe f(R, T) gravity is a theory whose gravitational action depends arbitrarily on the Ricci scalar, R, and the trace of the stress–energy tensor, T; its field equations also depend on matter Lagrangian, $$\mathscr {L}_{m}$$ L m . In the modified theories of gravity where field equations depend on Lagrangian, there is no uniqueness on the Lagrangian definition and the dynamics of the gravitational and matter fields can be different depending on the choice performed. In this work, we have eliminated the $$\mathscr {L}_{m}$$ L m dependence from f(R, T) gravity field equations by generalizing the approach of Moraes in Ref. [1]. We also propose a general approach where we argue that the trace of the energy–momentum tensor must be considered an “unknown” variable of the field equations. The trace can only depend on fundamental constants and few inputs from the standard model. Our proposal resolves two limitations: first the energy–momentum tensor of the f(R, T) gravity is not the perfect fluid one; second, the Lagrangian is not well-defined. As a test of our approach we applied it to the study of the matter era in cosmology, and the theory can successfully describe a transition between a decelerated Universe to an accelerated one without the need for dark energy.


1978 ◽  
Vol 31 (1) ◽  
pp. 105
Author(s):  
LJ Gregory ◽  
AH Klotz

A technique is developed, which uses a general energy-momentum tensor, to derive the equations of motion in general relativity. This enables the geodesic equations for spinless particles to be deduced.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012036
Author(s):  
Vitalii Vertogradov

Abstract In this paper we investigate how the leading term in the geodesic equation in Schwarzschild spacetime changes under the coordinate transformation to Eddington-Finkelstein coordinates. This term corresponds to the Newton force of attraction. Also we consider this term when we add the energy-momentum tensor of the form of the null dust and the null perfect fluid into right-hand side of the Einstein equation. We estimate the value of this force in Vaidya spacetime when the naked singularity formation occurs. Also we give conditions in generalized Vaidya spacetime when this force of attraction is replaced by the force of repulsion.


1976 ◽  
Vol 31 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Friedrich W. Hehl ◽  
G. David Kerlick ◽  
Paul von der Heyde

Abstract In this series of notes, we introduce a new quantity into the theory of classical matter fields. Besides the usual energy-momentum tensor, we postulate the existence of a further dynamical attribute of matter, the 3rd rank tensor ⊿ijk of hypermomentum. Subsequently, a general relativistic field theory of energy-momentum and hypermomentum is outlined. In Part I we motivate the need for hypermomentum. We split it into spin angular momentum, the dilatation hypermomentum, and traceless proper hypermomentum and discuss their physical meanings and conservation laws.


We give a local existence and uniqueness theorem for solutions of Einstein’s equations with dust energy momentum tensor in the class of m -dimensional, analytic, transverse, signature type changing spacetimes where the initial condi­tions are given on the hypersurface of signature type change. We also prove a similar theorem in the case that the energy momentum tensor represents a scalar field.


2002 ◽  
Vol 11 (09) ◽  
pp. 1347-1354 ◽  
Author(s):  
PAUL S. WESSON ◽  
SANJEEV S. SEAHRA ◽  
HONGYA LIU

We take Mach's principle to mean that the local properties of a test particle should depend on the global properties of the geometry. Using a complex wave-like metric and an appropriate redefinition of the energy-momentum tensor, we show this to be possible in principle within the context of general relativity. We outline implications for higher-dimensional theories of gravity.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
P. Betzios ◽  
E. Kiritsis ◽  
V. Niarchos

Abstract We investigate emergent gravity extending the paradigm of the AdS/CFT correspondence. The emergent graviton is associated to the (dynamical) expectation value of the energy-momentum tensor. We derive the general effective description of such dynamics, and apply it to the case where a hidden theory generates gravity that is coupled to the Standard Model. In the linearized description, generically, such gravity is massive with the presence of an extra scalar degree of freedom. The propagators of both the spin-two and spin-zero modes are positive and well defined. The associated emergent gravitational theory is a bi-gravity theory, as is (secretly) the case in holography. The background metric on which the QFTs are defined, plays the role of dark energy and the emergent theory has always as a solution the original background metric. In the case where the hidden theory is holographic, the overall description yields a higher-dimensional bulk theory coupled to a brane. The effective graviton on the brane has four-dimensional characteristics both in the UV and IR and is always massive.


Sign in / Sign up

Export Citation Format

Share Document