SUPER SYMMETRY IN STRONG AND WEAK INTERACTIONS

2010 ◽  
Vol 19 (02) ◽  
pp. 263-280
Author(s):  
U. V. S. SESHAVATHARAM ◽  
S. LAKSHMINARAYANA

For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is Xs · 105.32 = 938.8 MeV and corresponding charged boson is Xs(105.32/x) = 415.0 where Xs = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, ….

2010 ◽  
Vol 25 (35) ◽  
pp. 2933-2945 ◽  
Author(s):  
D. EBERT ◽  
V. CH. ZHUKOVSKY ◽  
A. V. TYUKOV

The dynamical fermion mass generation on the 3-brane in the 5D spacetime is discussed in a model with bulk fermions in interaction with fermions on the branes assuming the presence of a constant Abelian gauge field A5 in the bulk. We calculate the effective potential as a function of the fermion masses and the gauge field A5. The masses can be found from the stationarity condition for the effective potential (the gap equation). We formulate the equation for the mass spectrum of the 4D-fermions. The phases with finite and vanishing fermion masses are studied and the dependence of the masses on the radius of the fifth dimension is analyzed. The influence of the A5-gauge field on the symmetry breaking is considered both when this field is a background parameter and a dynamical variable. The critical values of the A5 field, the coupling constant and the radius are examined.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
S. Metayer ◽  
S. Teber

Abstract We consider reduced quantum electrodynamics ($$ {\mathrm{RQED}}_{d_{\gamma },{d}_e} $$ RQED d γ , d e ) a model describing fermions in a de-dimensional space-time and interacting via the exchange of massless bosons in dγ-dimensions (de ≤ dγ). We compute the two-loop mass anomalous dimension, γm, in general $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e with applications to RQED4,3 and QED4. We then proceed on studying dynamical (parity-even) fermion mass generation in $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e by constructing a fully gauge-invariant gap equation for $$ {\mathrm{RQED}}_{4,{d}_e} $$ RQED 4 , d e with γm as the only input. This equation allows for a straightforward analytic computation of the gauge-invariant critical coupling constant, αc, which is such that a dynamical mass is generated for αr> αc, where αr is the renormalized coupling constant, as well as the gauge-invariant critical number of fermion flavours, Nc, which is such that αc → ∞ and a dynamical mass is generated for N < Nc. For RQED4,3, our results are in perfect agreement with the more elaborate analysis based on the resolution of truncated Schwinger-Dyson equations at two-loop order. In the case of QED4, our analytical results (that use state of the art five-loop expression for γm) are in good quantitative agreement with those obtained from numerical approaches.


1993 ◽  
Vol 08 (04) ◽  
pp. 705-721
Author(s):  
M. RAVENDRANADHAN ◽  
M. SABIR

Ground state charge of some fermion soliton system without C-invariance is calculated in 1+1 and 3+1 dimensions by a combination of adiabatic method and spectral flow analysis. Induced charge is calculated by evolving adiabatically the fields from a vacuum having a background field which has a zero energy state and spectral symmetry. The spectral flow is calculated by an analysis of the bound state spectrum. In 1+1 dimension our calculations are in agreement with the results already found in the literature. In 3+1 dimension we study the interaction of fermions with monopoles and dyons. In the case of monopoles, even though there is spectral asymmetry, ground state charge is found to be ±1/2. It is shown that ground state charge gets contribution only from the lowest angular momentum states and is discontinuous at the fermion mass.


1987 ◽  
Vol 59 (21) ◽  
pp. 2405-2407 ◽  
Author(s):  
T. Appelquist ◽  
M. S. Chanowitz

1984 ◽  
Vol 239 (2) ◽  
pp. 508-518 ◽  
Author(s):  
Dieter Lüst
Keyword(s):  

2018 ◽  
Vol 207 ◽  
pp. 233-250 ◽  
Author(s):  
Javier Segarra-Martí ◽  
Vishal K. Jaiswal ◽  
Ana Julieta Pepino ◽  
Angelo Giussani ◽  
Artur Nenov ◽  
...  

A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows characterising ground state conformations of flexible nucleobase aggregates that play a crucial role in nucleic acid photochemistry.


2003 ◽  
Vol 68 (8) ◽  
pp. 1467-1487 ◽  
Author(s):  
Wesley R. Browne ◽  
Frances Weldon ◽  
Adrian Guckian ◽  
Johannes G. Vos

The syntheses and characterisation of a series of mononuclear and dinuclear ruthenium polypyridyl complexes based on the bridging ligands 1,3-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]benzene, 1,4-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]benzene, 2,5-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]thiophene, 2,5-bis-[5-pyrazinyl-1H-1,2,4-triazol-3-yl]thiophene are reported. Electrochemical studies indicate that in these systems, the ground state interaction is critically dependent on the nature of the bridging ligand and its protonation state, with strong and weak interactions being observed for thiophene- and phenylene-bridged complexes, respectively.


1988 ◽  
Vol 60 (15) ◽  
pp. 1589-1589 ◽  
Author(s):  
T. Appelquist ◽  
M. S. Chanowitz

2005 ◽  
Vol 72 (4) ◽  
Author(s):  
Tomáš Brauner ◽  
Jiří Hošek

Sign in / Sign up

Export Citation Format

Share Document