Investigation of the 16O+194Pt reaction: One- and two-dimensional dynamical interpretation

2017 ◽  
Vol 26 (04) ◽  
pp. 1750013 ◽  
Author(s):  
D. Naderi ◽  
A. Farmani

In this paper, we applied the Langevin dynamical model to investigate the different aspects of the [Formula: see text]O+[Formula: see text]Pt reaction. Elongation and orientation degree of freedom ([Formula: see text] coordinate) which are the first and second dimensions of dynamical calculations, are presented here. Fission time, fission cross-section, pre-scission neutron multiplicity, and fission probability were calculated using one- and two-dimensional Langevin equations. Also, anisotropy of fission-fragments angular distribution has been investigated based on the transition state model, one- and two-dimensional Langevin dynamical models. It was found that by adding the orientation degree of freedom to calculations, the fission time and pre-scission neutrons multiplicity increases whereas fission cross-section, and fission probability decreases. The two-dimensional dynamical calculations are a better match to the experimental data than the one-dimensional dynamical calculations, when using nominal values for the reduced dissipation coefficient and shape-dependent level density parameter. However, if model parameters are adjusted to reproduce the fission cross-section data, then both the one- and two-dimensional models give a satisfactory match to the fission fragment anisotropy data. Nonequilibrium [Formula: see text] distributions in the dynamical model can better explain the experimental anisotropy of the angular distribution of fission-fragments with respect to the equilibrium [Formula: see text] distribution in saddle and scission point transition state models.

2020 ◽  
pp. 23-26
Author(s):  
V.M. Khvastunov ◽  
V.I. Kasilov ◽  
S.S. Kochetov ◽  
A.A. Khomich

Using the data on angular distribution of fission fragments, a threshold has been determined in a dipole fission channel with J = 1 spin projection to the nucleus symmetry axis. It has been shown that the peak observed in the 238U fission cross section is determined by the contribution from the quadrupole excitation.


1963 ◽  
Vol 3 (01) ◽  
pp. 19-27 ◽  
Author(s):  
P.M. Blair ◽  
D.W. Peaceman

Abstract The shape and position of the gas-oil transition zone during downdip displacement of oil by gas has been calculated using flow equations which include the effects of gravity, relative permeability, capillary pressure and compressibility of the fluids. The calculations treat the problem in two space dimensions, and results are compared with data from a laboratory model tilted at 30 degrees and 60 degrees from the horizontal on displacements near and above the maximum rate at which gravity segregation prevents channeling of the gas along the top of the stratum. The good agreement between calculated and experimental results demonstrates the validity of the technique as well as that of the flow equations. Introduction Knowledge of the fluid distribution and movement in and oil reservoirs important in producing operations and estimation of reserves. The history of the oil industry has included steady progress in improving the accuracy of calculations which provide the required knowledge. The earliest method of calculating reservoir performance consisted of material-balance equations based on the assumption that all properties were uniform throughout a reservoir. For many reservoirs such a simple formulation is still the most useful. However, when large pressure and saturation gradients exist in a reservoir, the assumption of uniform values throughout may lead to significant error. To reduce these errors, Buckley and Leverett introduced a displacement equation which considers pressure and saturation gradients. Methods available at that time permitted solutions to the Buckley-Leverett equation in one space dimension; these solutions have been very useful in solving many problems related to the production of oil. However, the one-dimensional methods are not adequate for systems in which saturations vary in directions other than the direction of flow. An example of such a system is the case of gas displacing oil down a dipping stratum in which the gas-oil contact becomes significantly tilted. Of course, the Buckley-Leverett displacement method cannot predict the tilt of the gas-oil contact. Recent improvements of the one-dimensional Buckley-Leverett method achieve some success in predicting the tilt of the gas-oil contact at sufficiently low flow rates. However, at rates high enough that the viscous pressure gradient nearly equals or exceeds the gravity gradient, even these improved one-dimensional methods incorrectly predict the shape and velocity of the contact. Further progress in estimating such fluid movements in a reservoir appears to require consideration of the problem in more than one space dimension. The recent two-dimensional method of Douglas, Peaceman and Rachford appears adaptable to calculate changes with time of the saturation distribution in a vertical cross-section of a reservoir. The movement of saturation contours should represent the moving fluid contacts and include the effects of crossflow due to gravity, as well as variations in the rock and fluid properties. The nonlinear nature of the equations used in the method has prevented proof of the validity of the solutions. Douglas, Peaceman and Rachford made some comparisons with experiment but did not include cases in which gravity was important nor cases involving displacement by the nonwetting phase. Forthesereasons, atestof the two-dimensional method for a case in which these factors are included would be very desirable. The test selected was a comparison of calculated results with those from a carefully controlled laboratory experiment on a model with measured physical properties. The model selected was one in which gas displaced oil down a tilted, rectangular sand pack. The model can be thought of as representing a vertical cross-section taken parallel to the dip of a reservoir. The displacement thus simulates gas displacing oil downdip that might result from gas-cap expansion or gas injection. SPEJ P. 19^


Measurements of the ‘cross-section’ of the nuclear reaction N 15 (p, α) C 12 have been made for protons with different values of the energy in the interval between 200 and 450 keV. There are indications of a broad maximum, in the curve showing the variation of ‘cross-section’ with energy, in the neighbourhood of 400 keV, with a width of 150 keV. The partial proton width of the maximum is 250 eV. Extrapolation of the one-level dispersion formula, together with the theory of thermonuclear reactions, gives a lifetime of 3 x 10 4 years for N 15 in the sun. A photographic method of determining the angular distribution of the emitted α-particles is described. The angular distribution near 400 keV is found to be approximately isotropic, the deviations from isotropy being, at most, 10%.


2020 ◽  
Vol 29 (02) ◽  
pp. 2050007
Author(s):  
H. Eslamizadeh ◽  
M. Pirpour

A stochastic approach based on four-dimensional (4D) dynamical model has been used to simulate the fission process of the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr produced in fusion reactions. Effects of isospin and dissipation coefficient of the [Formula: see text] coordinate, [Formula: see text], on estimation of the evaporation residue (ER) cross-section, the prescission neutron multiplicity, the variance of the mass and energy distributions of fission fragments and the anisotropy of fission fragments angular distribution have been investigated for the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr. Three collective shape coordinates [Formula: see text] plus the projection of total spin of the compound nucleus to the symmetry axis, [Formula: see text], were considered in the 4D dynamical model. In the 4D dynamical model, the magnitude of the dissipation coefficient of [Formula: see text], [Formula: see text], was considered as a free parameter and its magnitude inferred by fitting measured data on the ER cross-section. Results of the extracted dissipation coefficients of [Formula: see text] for different isotopes of Fr were shown that the magnitude of the dissipation coefficient of [Formula: see text] increases with decreasing isospin of fissioning compound nucleus. It was also shown that the prescission neutron multiplicity and the anisotropy of fission fragments angular distribution increase with increasing isospin whereas the variance of the mass and energy distributions of fission fragments decrease with increasing isospin of fissioning compound nucleus. Furthermore, it was shown that the calculated values of prescission neutron multiplicity and the variance of the mass distribution of fission fragments for the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr decrease with the dissipation strength of [Formula: see text], whereas the variance of the energy distribution of fission fragments and the anisotropy of fission fragments angular distribution increase with the dissipation strength of [Formula: see text].


Author(s):  
Dalip Singh Verma ◽  
Kushmakshi .

Mass and charge distribution of the cross-section for the fission fragments obtained in the decay of hot and rotating compound system formed in the reaction 48Ca + 162Dy → 210Rn* at an incident energy 139.6 MeV has been calculated using the dynamical cluster-decay model. Isotopic composition for each element belonging to the symmetric mass region has been obtained. The shell closure at N=50 for light and at Z=50 for heavy mass binary fragments gives a deep minima in the fragmentation potential at touching configuration and governs the fission partition of the compound system. The fission fragments of the symmetric mass region have their dominating presence along with strong odd-even staggering i.e., even-Z fission fragments are more probable than the odd ones, similar to the observed trends of the yield.


1980 ◽  
Vol 41 (C10) ◽  
pp. C10-234-C10-238 ◽  
Author(s):  
C. Cabot ◽  
H. Gauvin ◽  
Y. Le Beyec ◽  
H. Delagrange ◽  
J. P. Dufour ◽  
...  

1979 ◽  
Author(s):  
R. Kotitschke ◽  
J. Scharrer

F.VIII R:Ag was determined by quantitative immunelectrophoresis (I.E.) with a prefabricated system. The prefabricated system consists of a monospecific f.VIII rabbit antiserum in agarose on a plastic plate for the one and two dimensional immunelectrophoresis. The lognormal distribution of the f.VIII R:Ag concentration in the normal population was confirmed (for n=70 the f.VIII R:Ag in % of normal is = 95.4 ± 31.9). Among the normal population there was no significant difference between blood donors (one blood donation in 8 weeks; for n=43 the f.VIII R:Ag in % of normal is = 95.9 ± 34.0) and non blood donors (n=27;f.VIII R:Ag = 94.6 ± 28.4 %). The f.VIII R:Ag concentration in acute hepatitis B ranged from normal to raised values (for n=10, a factor of 1.8 times of normal was found) and was normal again after health recovery (n=10, the factor was 1.0). in chronic hepatitis the f.VIII R:Ag concentration was raised in the majority of the cases (for n=10, the factor was 3.8). Out of 22 carrier sera 20 showed reduced, 2 elevated levels of the f.VIII R:Ag concentration. in 5 sera no f.VIII R:Ag could be demonstrated. The f.VIII R:Ag concentration was normal for n=10, reduced for n=20 and elevated for n=6 in non A-non B hepatitis (n=36). Contrary to results found in the literature no difference in the electrophoretic mobility of the f.VIII R:Ag was found between hepatitis patients sera and normal sera.


Sign in / Sign up

Export Citation Format

Share Document