Bohr Hamiltonian of triaxial nuclei using Morse plus screened Kratzer potentials with the extended Nikiforov–Uvarov method

Author(s):  
S. Haman Adama ◽  
D. Nga Ongodo ◽  
A. Zarma ◽  
J. M. Ema’a Ema’a ◽  
P. Ele Abiama ◽  
...  

In this work, Bohr Hamiltonian is used to explain the behavior of triaxial nuclei. A new potential, called Morse plus screened Kratzer potential, has been developed for the [Formula: see text]-part with [Formula: see text] fixed at [Formula: see text]. The Extended Nikiforov–Uvarov method involving Confluent Heun functions is used to derive the wave function and energy expression. The electric quadrupole transition rates and energy spectrum of platinum [Formula: see text] are determined and compared with the experimental data and some theoretical results.

2018 ◽  
Vol 27 (10) ◽  
pp. 1850085 ◽  
Author(s):  
I. Inci ◽  
H. Sonkaya

The properties of odd nuclei have been investigated within the collective model by assuming the system is composed of a single nucleon in the [Formula: see text] single particle orbit coupled to a [Formula: see text]-unstable even-core. The Davidson potential has been used in the corresponding Bohr Hamiltonian for the even core. The excitation energy spectrum and the electric quadrupole transition ratios have been obtained. The results have been used to predict the experimental data of the some selected odd isotopes.


2020 ◽  
Vol 29 (10) ◽  
pp. 2050082
Author(s):  
Y. Omon ◽  
J. M. Ema’a Ema’a ◽  
P. Ele Abiama ◽  
G. H. Ben-Bolie ◽  
P. Owono Ateba

In this paper, Bohr Hamiltonian is used to describe the behaviors of triaxial nuclei with screened Kratzer potential. The Nikivorov–Uvarov method is used to derive the energy spectrum and corresponding wave function. The electric quadruple transition ratios and energy spectrum of the [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Pt, [Formula: see text]Pt and [Formula: see text]Pt are calculated and compared with the experimental data. The results are in good agreement with experiment data.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850034 ◽  
Author(s):  
C. Majumder ◽  
H. P. Sharma ◽  
S. Chakraborty ◽  
S. S. Tiwary

The reduced electric quadrupole transition rates have been calculated for the states of the negative parity bands in [Formula: see text]Cd nuclei using semiclassical model (SCM). The calculated transition rates are found to be decreasing with increasing spin for the states above [Formula: see text] and the dynamic moment of inertia [Formula: see text] of the higher spin states are found to be almost constant. The calculated B(E2) values show better agreement with the experimental B(E2) values for [Formula: see text]Cd. The results for both [Formula: see text]Cd and [Formula: see text]Cd nuclei show a very rapidly increasing value of the [Formula: see text] ratio with increasing spin, suggesting the antimagnetic rotational character of the states lying above the spins [Formula: see text] and [Formula: see text], respectively.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450053 ◽  
Author(s):  
I. Inci

In this paper, the Morse potential is used in the β-part of the collective Bohr Hamiltonian for triaxial nuclei. Energy eigenvalues and eigenfunctions are obtained in a closed form through exactly separating the Hamiltonian into its variables by using an appropriate form of the potential. The results are applied to generate the nuclear spectrum of 192 Pt , 194 Pt and 196 Pt isotopes which are known to be the best candidate exhibiting triaxiality. Electric quadrupole transition ratios are calculated and then compared with the experimental data and the Z(5) model results.


1985 ◽  
Vol 165 (1-3) ◽  
pp. 43-48 ◽  
Author(s):  
A.M. Bruce ◽  
W. Gelletly ◽  
J. Lukasiak ◽  
W.R. Phillips ◽  
D.D. Warner

2019 ◽  
Vol 28 (12) ◽  
pp. 1950106
Author(s):  
D. Nga Ongodo ◽  
J. M. Ema’a Ema’a ◽  
P. Ele Abiama ◽  
G. H. Ben-Bolie

The Bohr Hamiltonian with four inverse power terms potential for the [Formula: see text]-part and a harmonic oscillator for the [Formula: see text]-part is solved. The [Formula: see text]-part has been solved using the biconfluent Heun equation. The total wave function and energy have been derived. The numerical results for energy triaxial nuclei spectra are compared with the experimental data, esM and esKM models known for [Formula: see text] atomic nuclei. These results are in overall good agreement with the experimental data. After this, the corresponding [Formula: see text] transition rates have been calculated for each nuclei of Platinum.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750073 ◽  
Author(s):  
Nahid Soheibi ◽  
Majid Hamzavi ◽  
Mahdi Eshghi ◽  
Sameer M. Ikhdair

We calculate the eigenvalues and their corresponding eigenfunctions of the Bohr’s collective Hamiltonian with the help of the modified Pöschl–Teller (MPT) potential model within [Formula: see text]-unstable structure. Our numerical results for the ground state (g.s.) [Formula: see text] and [Formula: see text] band heads, together with the electric quadrupole [Formula: see text] transition rates, are displayed and compared with the available experimental data.


2017 ◽  
Vol 95 (4) ◽  
pp. 393-401 ◽  
Author(s):  
K. Wang ◽  
S. Li ◽  
R. Si ◽  
C.Y. Chen ◽  
J. Yan ◽  
...  

Energies, wavelengths, lifetimes, oscillator strengths, electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transition rates among the 42 fine structure levels belonging to the 3s23p4, 3s23p33d, and 3s3p5 configurations for S-like Fe and S-like ions with 41 ≤ Z ≤ 49 are calculated using the fully relativistic multiconfiguration Dirac–Fock (MCDF) method. In the calculations, contributions from correlations within the n = 6 complex, Breit interaction, and quantum electrodynamics effects are included. Detailed comparisons are made between the present results and the available experimental and other theoretical data. We found that our calculated energy levels generally agree within ≤0.5% with the experimentally compiled results, and the transition rates agree within ≤12% with other theoretical results for a majority of the transitions. These accurate theoretical data should be beneficial in fusion plasma research and astrophysical applications.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950087 ◽  
Author(s):  
S. M. Moosavi Nejad ◽  
A. Armat

Performing a fit procedure on the hyperon masses, we first determine the free parameters in the Cornell-like hypercentral potential between the constituent quarks of hyperons in their ground state. To this end, using the variational principle, we apply the hyperspherical Hamiltonian including the Cornell-like hypercentral potential and the perturbation potentials due to the spin–spin, spin–isospin and isospin–isospin interactions between constituent quarks. In the following, we compute the hyperon magnetic moments as well as radiative decay widths of spin-3/2 hyperons using the spin-flavor wave function of hyperons. Our analysis shows acceptable consistencies between theoretical results and available experimental data. This leads to reliable wave functions for hyperons at their ground state.


Sign in / Sign up

Export Citation Format

Share Document