davidson potential
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
M. Chabab ◽  
I. El-ilali ◽  
A. Lahbas ◽  
M. Oulne

The low-lying collective spectra for axially symmetric nuclei are described within the Bohr–Hamiltonian by considering deformation-dependent mass coefficients and Kratzer potential in [Formula: see text] part. The energy eigenvalues and the total wave function of the problem are obtained in compact forms by means of the asymptotic iteration method. The numerical calculations are carried out for energy spectra as well as electromagnetic transition probabilities, and compared with experimental data in both cases: within and without the deformation-dependent mass (DDM) formalism. We investigate the nuclear observables of four even-A nuclei [Formula: see text]Sm, [Formula: see text]Gd, [Formula: see text]Yb, [Formula: see text]W and two odd-A nuclei [Formula: see text]Yb, [Formula: see text]Dy. Moreover, we will show that the choice of the Kratzer potential minimizes the level spacings within the [Formula: see text] band, which are usually overestimated by Bohr–Hamiltonian with Davidson potential.


2020 ◽  
Vol 16 ◽  
pp. 121
Author(s):  
D. Bonatsos ◽  
E. A. McCutchan ◽  
N. Minkov ◽  
R. F. Casten ◽  
P. Yotov ◽  
...  

An exactly separable version of the Bohr Hamiltonian, is obtained by using a potential of the form V (β, γ) = u(β) + u(γ)/β2, with a Davidson potential for u(β) and a stiff harmonic oscillator potential centered around γ = 0o, for u(γ).Using two parameters (β0 and the γ-stiffness parameter) the band features and B(E2) transition rates of almost all well-deformed rare-earth and actinide nuclei are reproduced, while the spectrum of the SU(3) dynamical symmetry of the Interacting Boson Model can be obtained, for the first time using the Bohr Hamiltonian.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850085 ◽  
Author(s):  
I. Inci ◽  
H. Sonkaya

The properties of odd nuclei have been investigated within the collective model by assuming the system is composed of a single nucleon in the [Formula: see text] single particle orbit coupled to a [Formula: see text]-unstable even-core. The Davidson potential has been used in the corresponding Bohr Hamiltonian for the even core. The excitation energy spectrum and the electric quadrupole transition ratios have been obtained. The results have been used to predict the experimental data of the some selected odd isotopes.


2017 ◽  
Vol 966 ◽  
pp. 82-101 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Hadi Sobhani ◽  
Akpan Ndem Ikot

2017 ◽  
Vol 26 (09) ◽  
pp. 1750054 ◽  
Author(s):  
M. Alimohammadi ◽  
H. Hassanabadi

In this work, we investigate the [Formula: see text]-rigid version of Bohr–Hamiltonian for the modified Davidson potential. Since the corresponding wave equation cannot be solved analytically, we apply the variational method. The related wave function, energy spectra and transition rates are determined. In order to evaluate our results, we fit the formula for the energy spectra to the available experimental data for some nuclei and compare the obtained standard error with the corresponding one in other similar work. Moreover, we study the collective behavior of these nuclei through the evolution of two quantities [Formula: see text] and [Formula: see text] in terms of number of valence nucleons.


2017 ◽  
Vol 32 (14) ◽  
pp. 1750085 ◽  
Author(s):  
H. Hassanabadi ◽  
M. Alimohammadi ◽  
S. Zare

In this paper, the wave equation corresponding to the [Formula: see text]-rigid version of Bohr Hamiltonian for the modified Davidson potential is investigated in the position-dependent mass formalism. By solving the related differential equation, the wave function, energy spectra and transition rates are obtained. In order to evaluate our results, they are compared with experimental data through the standard error.


Sign in / Sign up

Export Citation Format

Share Document