AN ALLEGED DISTORTED ROTATION

1996 ◽  
Vol 05 (03) ◽  
pp. 497-510
Author(s):  
ROLAND NOJAROV

The Giant Angle Dipole model describes a contrarotational (scissors) motion with superimposed deformation distortions. They cause changes in the mass and stiffness parameters and the physical observables (excitation energies and transition probabilities) corresponding to undistorted scissors motion. It is shown here that the observables, derived in this model using normalized excited states, coincide with the predictions for the low- and high-frequency modes with [Formula: see text] and 2, obtained by a recent canonical quantization of the isovector rotor, where no deformation distortions are assumed.

2006 ◽  
Vol 15 (03) ◽  
pp. 719-736 ◽  
Author(s):  
SH. SHARIPOV ◽  
M. J. ERMAMATOV ◽  
J. K. BAYIMBETOVA

Rotationally single-particle and vibrational excitations of two deformable triaxial odd 165 Ho and 167 Er nuclei are investigated with allowance for the interaction of collective and single-particle states. The ratios of excitation energies, of reduced E2 transition probabilities, and of quadrupole moments of these nuclei are calculated up to high-spin states.


Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 532-549
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


1980 ◽  
Vol 58 (16) ◽  
pp. 1687-1690 ◽  
Author(s):  
Delano P. Chong

The excitation energies calculated by the HAM/3 procedure for ΠΠ* transitions in linear molecules can be internally inconsistent by as much as ± 0.6 eV. In the recent study by Åsbrink etal., the problem was avoided by adopting Recknagel's expressions and requiring the proper average ΠΠ* excitation energy. In this paper, we trace the small inconsistency back to its origin in HAM/3 theory and derive the analytical expression for the energy correction as well as Recknagel's formulas. Numerical examples studied include all seven linear molecules investigated by Åsbrink etal. The explicit expression for the correction enables us to perform meaningful configuration-interaction calculations on the excited states, as illustrated by the carbon suboxide molecule.


Author(s):  
Mohammad A. AL-Shudeifat ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman

In this computational study, a light-weight dynamic device is investigated for passive energy reversal from the lowest frequency mode to the high frequency modes of a large-scale frame structure for rapid shock mitigation. The device is based on the single-sided vibro-impact mechanism. It has two functions for passive energy transfer: a nonlinear energy sink (NES) for local energy dissipation and an energy pump to high frequency modes where a significant amount of the shock energy is rapidly dissipated. As a result, a significant portion of the shock energy induced into the linear dynamic structure can be passively reversed from the lowest frequency mode to the high frequency modes and rapidly dissipated by their modal damping. The amount of the energy dissipated by the modal damping of the high frequency modes can be controlled by the amount of inherent damping in the device. Ideally, the device can passively reverse up to 80% of the input shock energy from the lowest frequency mode to the high frequency modes when its damping is assumed to be zero and its impact coefficient of restitution is equal to unity. The shock energy redistribution between this device and the high frequency modes is found to be efficient for rapid shock mitigation in the considered 9-story dynamic structure.


2017 ◽  
Vol 19 (44) ◽  
pp. 30089-30096 ◽  
Author(s):  
Jie J. Bao ◽  
Laura Gagliardi ◽  
Donald G. Truhlar

MC-PDFT is more accurate than CR-EOM-CCSD(T) or TDDFT when averaged over the first four adiabatic excitation energies of CN.


1968 ◽  
Vol 21 (3) ◽  
pp. 239 ◽  
Author(s):  
FC Barker ◽  
HJ Hay ◽  
PB Treacy

The light even nuclei with A ;;;. 10 have 0+ excited states near 6 MeV, probably with large (X-particle reduced widths. A similar state in BBe would be very broad. Evidence for 0+ excited states in BBe has been obtained here using many-level R-matrix fits to known (X-(X scattering data, but the excitation energies depend strongly on the assumed channel radius. For a simultaneous fit to the 9Be(p, d)BBe cross section, assuming these higher states are not strongly populated, the channel radius is restricted to (7~~) fm, implying a 0+ excited state at (6=f3) MeV of width (9=f4) MeV.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2019 ◽  
Author(s):  
Jacob Nite ◽  
Carlos A. Jimenez-Hoyos

Quantum chemistry methods that describe excited states on the same footing as the ground state are generally scarce. In previous work, Gill et al. (J. Phys. Chem. A 112, 13164 (2008)) and later Sundstrom and Head-Gordon (J. Chem. Phys. 140, 114103 (2014)) considered excited states resulting from a non-orthogonal configuration interaction (NOCI) on stationary solutions of the Hartree–Fock equations. We build upon those contributions and present the state-averaged resonating Hartree–Fock (sa-ResHF) method, which differs from NOCI in that spin-projection and orbital relaxation effects are incorporated from the onset. Our results in a set of small molecules (alanine, formaldehyde, acetaldehyde, acetone, formamide, and ethylene) suggest that sa-ResHF excitation energies are a notable improvement over configuration interaction singles (CIS), at a mean-field computational cost. The orbital relaxation in sa-ResHF, in the presence of a spin-projection operator, generally results in excitation energies that are closer to the experimental values than the corresponding NOCI ones.


Sign in / Sign up

Export Citation Format

Share Document