ACCURATE NONLINEAR REGISTRATION FOR TWO-DIMENSIONAL GEL ELECTROPHORESIS IMAGES

2013 ◽  
Vol 21 (03) ◽  
pp. 1350020
Author(s):  
HUA-MEI XIN ◽  
YUEMIN ZHU

Two-dimensional gel electrophoresis (2DGE) images are an important support for the analysis of proteins in proteomics. The registration of 2DGE images is considered as one of key elements in protein identification while it is a difficult problem. This paper proposes a new accurate nonlinear registration approach for 2DGE images, based on the exploitation of both spot distance measure and spot intensity. The method consists of three steps: multi-resolution affine registration, spot pairing and thin-plate spline interpolation. The results on both simulated and real gel images show that the proposed method significantly improves registration accuracy in comparison with thin-plate spline registration techniques.

2003 ◽  
Vol 185 (15) ◽  
pp. 4593-4602 ◽  
Author(s):  
Eugene Kolker ◽  
Samuel Purvine ◽  
Michael Y. Galperin ◽  
Serg Stolyar ◽  
David R. Goodlett ◽  
...  

ABSTRACT The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.


1985 ◽  
Vol 54 (03) ◽  
pp. 626-629 ◽  
Author(s):  
M Meyer ◽  
F H Herrmann

SummaryThe platelet proteins of 9 thrombasthenic patients from 7 families were analysed by high resolution two-dimensional gel electrophoresis (HR-2DE) and crossed immunoelectrophoresis (CIE). In 7 patients both glycoproteins (GPs) IIb and Ilia were absent or reduced to roughly the same extent. In two related patients only a trace of GP Ilb-IIIa complex was detected in CIE, but HR-2DE revealed a glycopeptide in the position of GP Ilia in an amount comparable to type II thrombasthenia. This GP Ilia-like component was neither recognized normally by anti-GP Ilb-IIIa antibodies nor labeled by surface iodination. In unreduced-reduced two-dimensional gel electrophoresis two components were observed in the region of GP Ilia. The assumption of a structural variant of GP Ilia in the two related patients is discussed.


Sign in / Sign up

Export Citation Format

Share Document