scholarly journals MITTAG-LEFFLER STABILITY ANALYSIS OF TEMPERED FRACTIONAL NEURAL NETWORKS WITH SHORT MEMORY AND VARIABLE-ORDER

Fractals ◽  
2021 ◽  
pp. 2140029
Author(s):  
CHUAN-YUN GU ◽  
FENG-XIA ZHENG ◽  
BABAK SHIRI

A class of tempered fractional neural networks is proposed in this paper. Stability conditions for tempered fractional neural networks are provided by using Banach fixed point theorem. Attractivity and Mittag-Leffler stability are given. In order to show the efficiency and convenience of the method used, tempered fractional neural networks with and without delay are discussed, respectively. Furthermore, short memory and variable-order tempered fractional neural networks are proposed under the global conditions. Finally, two numerical examples are used to demonstrate the theoretical results.

2019 ◽  
Vol 20 (3) ◽  
pp. 403
Author(s):  
Suzete M Afonso ◽  
Juarez S Azevedo ◽  
Mariana P. G. Da Silva ◽  
Adson M Rocha

In this work we consider the general functional-integral equation: \begin{equation*}y(t) = f\left(t, \int_{a}^{b} k(t,s)g(s,y(s))ds\right), \qquad t\in [a,b],\end{equation*}and give conditions that guarantee existence and uniqueness of solution in $L^p([a,b])$, with {$1<p<\infty$}.We use  Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Linjun Wang ◽  
Xumei Chen

We study the existence of positive solutions for discrete boundary value problems to one-dimensionalp-Laplacian with delay. The proof is based on the Guo-Krasnoselskii fixed-point theorem in cones. Two numerical examples are also provided to illustrate the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jing Cui ◽  
Litan Yan

We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert spaces. We establish a new composition theorem for square-mean almost automorphic functions under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate the existence of square-mean almost automorphic mild solutions. Some known results are generalized and improved.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramazan Yazgan ◽  
Osman Tunç

AbstractThis study is about getting some conditions that guarantee the existence and uniqueness of the weighted pseudo almost periodic (WPAP) solutions of a Lasota–Wazewska model with time-varying delays. Some adequate conditions have been obtained for the existence and uniqueness of the WPAP solutions of the Lasota–Wazewska model, which we dealt with using some differential inequalities, the WPAP theory, and the Banach fixed point theorem. Besides, an application is given to demonstrate the accuracy of the conditions of our main results.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


2021 ◽  
Vol 2 (3) ◽  
pp. 9-20
Author(s):  
VARSHINI S ◽  
BANUPRIYA K ◽  
RAMKUMAR K ◽  
RAVIKUMAR K

The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques.


2004 ◽  
Vol 14 (05) ◽  
pp. 337-345 ◽  
Author(s):  
ZHIGANG ZENG ◽  
DE-SHUANG HUANG ◽  
ZENGFU WANG

This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be obtained. Finally, the simulating results demonstrate the validity and feasibility of our proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Wei Feng ◽  
Simon X. Yang ◽  
Haixia Wu

The global asymptotic robust stability of equilibrium is considered for neutral-type hybrid bidirectional associative memory neural networks with time-varying delays and parameters uncertainties. The results we obtained in this paper are delay-derivative-dependent and establish various relationships between the network parameters only. Therefore, the results of this paper are applicable to a larger class of neural networks and can be easily verified when compared with the previously reported literature results. Two numerical examples are illustrated to verify our results.


Sign in / Sign up

Export Citation Format

Share Document