CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION

2000 ◽  
Vol 08 (01) ◽  
pp. 139-156 ◽  
Author(s):  
MURTHY N. GUDDATI ◽  
JOHN L. TASSOULAS

Absorbing boundary conditions are generally required for numerical modeling of wave phenomena in unbounded domains. Local absorbing boundary conditions are generally preferred for transient analysis because of their computational efficiency. However, their accuracy is severely limited because the more accurate high-order boundary conditions cannot be implemented easily. In this paper, a new arbitrarily high-order absorbing boundary condition based on continued fraction approximation is presented. Unlike the existing boundary conditions, this one does not contain high-order derivatives, thus making it amenable to implementation in conventional C0 finite element and finite difference methods. The superior numerical properties and implementation aspects of this boundary condition are discussed. Numerical examples are presented to illustrate the performance of these new high-order boundary condition.

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


2010 ◽  
Vol 229 (4) ◽  
pp. 1099-1129 ◽  
Author(s):  
Eliane Bécache ◽  
Dan Givoli ◽  
Thomas Hagstrom

2020 ◽  
Vol 148 (4) ◽  
pp. 2451-2451
Author(s):  
Vianey Villamizar ◽  
Tahsin Khajah ◽  
Sebastian Acosta ◽  
Dane Grundvig ◽  
Jacob Badger ◽  
...  

Geophysics ◽  
1985 ◽  
Vol 50 (6) ◽  
pp. 892-902 ◽  
Author(s):  
R. G. Keys

By decomposing the acoustic wave equation into incoming and outgoing components, an absorbing boundary condition can be derived to eliminate reflections from plane waves according to their direction of propagation. This boundary condition is characterized by a first‐order differential operator. The differential operator, or absorbing boundary operator, is the basic element from which more complicated boundary conditions can be constructed. The absorbing boundary operator can be designed to absorb perfectly plane waves traveling in any two directions. By combining two or more absorption operators, boundary conditions can be created which absorb plane waves propagating in any number of directions. Absorbing boundary operators simplify the task of designing boundary conditions to reduce the detrimental effects of outgoing waves in many wave propagation problems.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 296-301 ◽  
Author(s):  
Chengbin Peng ◽  
M. Nafi Toksöz

Absorbing boundary conditions are widely used in numerical modeling of wave propagation in unbounded media to reduce reflections from artificial boundaries (Lindman, 1975; Clayton and Engquist, 1977; Reynolds, 1978; Liao et al., 1984; Cerjan et al., 1985; Randall, 1988; Higdon, 1991). We are interested in a particular absorbing boundary condition that has maximum absorbing ability with a minimum amount of computation and storage. This is practical for 3-D simulation of elastic wave propagation by a finite‐difference method. Peng and Toksöz (1994) developed a method to design a class of optimal absorbing boundary conditions for a given operator length. In this short note, we give a brief introduction to this technique, and we compare the optimal absorbing boundary conditions against those by Reynolds (1978) and Higdon (1991) using examples of 3-D elastic finite‐difference modeling on an nCUBE-2 parallel computer. In the Appendix, we also give explicit formulas for computing coefficients of the optimal absorbing boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document