EFFECT OF BORATES AND SILICATES ON WEARING PROPERTIES OF MAO COATINGS

2016 ◽  
Vol 24 (05) ◽  
pp. 1750061
Author(s):  
Yu ZHANG ◽  
YAN-WEI ZHAO ◽  
NAN XIANG ◽  
REN-GUO SONG

In the present study, microarc oxidation (MAO) coatings were formed on ZL101A aluminum alloy in an electrolytic bath containing 3[Formula: see text]g/L KOH [Formula: see text] 2[Formula: see text]g/L Na2WO[Formula: see text] 4[Formula: see text]g/L KF. The morphology and wearing behavior were investigated. In both electrolytes, the additives were borates (Na2B4O718[Formula: see text]g/L) and silicates (Na2SiO3 18[Formula: see text]g/L), respectively. It was found that the coating formed in borates-containing electrolyte was of compact and smooth structure than that of the one formed in silicates-containing electrolyte at the optimum treatment time. It was found that all the coatings were composed of á-Al2O3 and ã-Al2O3. The microhardness and wear tests proved that the coating formed in borates-containing electrolyte was having better mechanical properties than those of the coating formed in silicates-containing electrolyte.

CORROSION ◽  
10.5006/3393 ◽  
2020 ◽  
Vol 76 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Xi Wang ◽  
G.S. Frankel

Active metal pigments in metal-rich coatings are oxidized preferentially and provide sacrificial protection to more-noble metallic substrates. Al-rich primer (AlRP), which contains pigment particles made from an active aluminum alloy (Al-5Zn-0.02In), uses this mechanism to provide a chromate-free epoxy primer system. To address the high self-corrosion rate of active aluminum pigments, the active aluminum pigment particles are pretreated using trivalent chromium process (TCP). In this study, the effects of different TCP treatment times were evaluated, and coating protection properties were studied. Potentiodynamic polarization tests were performed in aerated 0.1 M NaCl solution for a TCP-treated bulk active aluminum alloy and for AA2024-T3. The potentiodynamic polarization curves show that the corrosion potential of the bulk active aluminum alloy is about 500 mV lower than that of AA2024-T3. Therefore, bulk active aluminum alloy is a candidate alloy for cathodic protection of AA2024-T3. In addition, the TCP treatment reduces the corrosion rate of the bulk active aluminum alloy by one order of magnitude. AlRP-coated AA2024-T3 panel samples were scribed and exposed in corrosion chambers, and the cross section of each coating was evaluated by scanning electron microscopy and energy dispersive x-ray spectroscopy mapping. The accelerated corrosion exposure results show that AlRP coatings containing TCP-treated particles provided better protection to the scribe than the one with bare pigment particles. The adhesion of the AlRPs based on pull-off adhesion tests was similar regardless of the TCP treatment time of the pigments, but the adhesion of AlRP was reduced in comparison to a neat epoxy coating.


2021 ◽  
Author(s):  
Furong Chen ◽  
Yihang Yang ◽  
Nan Li

Abstract 7A52 (Al-Zn-Mg-Cu) alloy is a high-strength aluminum alloy, its welded joints are often accompanied by defects such as poor wear resistance and low fatigue strength. Herein, we try to optimize the welded joint of 7A52 aluminum alloy by using ultrasonic impact treatment (UIT). Generally, the mechanical properties such as microhardness and fatigue strength of the welded joint after UIT will be improved. 7A52 aluminum alloy tandem metal inert gas (MIG) welded joints with UIT time per unit area of 2.5 min, 5 min, 10 min, 15 min, 30 min, and 75 min were studied. Through the surface topography, microstructure observation, and mechanical properties test, the time parameters of excessive treatment, lack of treatment, and proper treatment were selected, and the effects of UIT, excessive treatment, lack of treatment, and proper treatment on fatigue strength were analyzed. Test results show that, the mechanical properties of welded joints after UIT are improved. The proper treatment time is 15min and its fatigue strength is 37.86MPa, respectively under the stress ratio of 0.1. Compared to the original welding condition with a fatigue strength of 28.61MPa, the fatigue strength of the welded joints of 7A52 aluminum alloy increased by 32.33%. The largest percentage of grain size reduction occurs when the UIT is 15 min. Moreover, excessive treatment and lack of treatment will not further refine the grains and optimize the mechanical properties.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS A96061 is a wrought precipitation-hardenable aluminum alloy having excellent resistance to corrosion and good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-292. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract 850.0 ALUMINUM Alloy can be considered the general purpose light metal bearing alloy. Its good thermal conductivity keeps operating temperatures low. It has high ductility. In many applications it has been found to be superior to steel backed bearings. 852.0 ALUMINUM Alloy has higher mechanical properties making it suitable for heavier load and higher temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Al-290. Producer or source: Federated Bronze Products Inc..


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Sign in / Sign up

Export Citation Format

Share Document