FERMI SURFACE MAPPING BY PHOTOEMISSION

1997 ◽  
Vol 04 (02) ◽  
pp. 391-408 ◽  
Author(s):  
J. OSTERWALDER

Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) data are usually measured spectrum by spectrum at various emission angles or photon energies in order to observe the dispersion of energy bands in solids and on their surfaces. In these lecture notes an alternative experimental procedure is described which yields a direct mapping of constant energy surfaces within the band structure, and specifically of the Fermi surface. This approach appears very promising, in particular when applied to magnetic systems and systems with narrow bands. Fermi surfaces of surface states are seen in direct relation to the underlying bulk Fermi surface.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. E. Dávila ◽  
J. Ávila ◽  
I. R. Colambo ◽  
D. B. Putungan ◽  
D. P. Woodruff ◽  
...  

AbstractNew angle-resolved photoelectron spectroscopy (ARPES) data, recorded at several different photon energies from the Si(111)(7 × 7) surface, show that the well-known S1 and S2 surface states that lie in the bulk band gap are localised at specific (adatom and rest atom) sites on the reconstructed surface. The variations in the photoemission intensity from these states as a function of polar and azimuthal emission angle, and incident photon energy, are not consistent with Fermi surface mapping but are well-described by calculations of the multiple elastic scattering in the final state. This localisation of the most shallowly bound S1 state is consistent with the lack of significant dispersion, with no evidence of Fermi surface crossing, implying that the surface is not, as has been previously proposed, metallic in character. Our findings highlight the importance of final state scattering in interpreting ARPES data, an aspect that is routinely ignored and can lead to misleading conclusions.


1996 ◽  
Vol 437 ◽  
Author(s):  
Eli Rotenberg ◽  
J. D. Denlinger ◽  
S. D. Kevan ◽  
K. W. Goodman ◽  
J. G. Tobin ◽  
...  

AbstractThe electronic states at the Fermi surface determine diverse properties such as magnetism, chemical bonding, and phonon-electron coupling. Using a conventional hemispherical analyzer at the ultraESCA beamline 7.0 of the Advanced Light Source, we have measured Fermi contours of the bulk and surface states of Cu(001) and Ag(001). For bulk states, we used uniform sampling in k-space by varying both the electron takeoff angle as well as the photon energy. Three-dimensional plots (in k-space) of bulk and surface states at the Fermi level can easily be achieved within one or two synchrotron shifts. Surface states, whose momentum is independent of k-perpendicular, are easily mapped if sufficiently dense angular sampling is performed. The states crossing the Fermi level at X in the surface Brillouin Zone of Cu(100) and Ag(100) are presented as examples.


1999 ◽  
Vol 68 (4) ◽  
pp. 1398-1403 ◽  
Author(s):  
Taichi Okuda ◽  
Masato Kotsugi ◽  
Kan Nakatsuji ◽  
Masao Fujikawa ◽  
Shigemasa Suga ◽  
...  

It is shown that the theoretical form of the anisotropy of the high-frequency surface resistance of a metal having spheroidal energy surfaces, calculated exactly by Sondheimer, may be obtained also in the extreme anomalous limit by means of the ineffectiveness concept. This result is taken to justify the application of the simpler ineffectiveness method to metals having Fermi surfaces of any form, and it is shown that the resistance is related solely to the geometrical shape of the Fermi surface. The possible application of this result in the study of metals is discussed.


2021 ◽  
Author(s):  
Sergey Borisenko ◽  
Alexander Fedorov ◽  
Kuibarov Andrii ◽  
Marco Bianchi ◽  
Volodymyr Bezguba ◽  
...  

Abstract Fermi surfaces, three-dimensional (3D) abstract interfaces that define the occupied energies of electrons in a solid, are important for characterizing and predicting the thermal, electrical, magnetic, and optical properties of crystalline metals and semiconductors [1]. Angle-resolved photoemission spectroscopy (ARPES) is the only technique directly probing the Fermi surface by measuring the Fermi momenta ( kF ) from energy- and angular distribution of photoelectrons dislodged by monochromatic light [2]. Existing electron analyzers are able to determine a number of kF -vectors simultaneously, but current technical limitations prohibit a direct high-resolution 3D Fermi surface mapping. As a result, no such datasets exist, strongly limiting our knowledge about the Fermi surfaces and restricting a detailed comparison with the widely available nowadays calculated 3D Fermi surfaces. Here we show that using a simpler instrumentation, based on the Fourier electron optics combined with a retardation field of the detector, it is possible to perform 3D-mapping within a very short time interval and with very high resolution. We present the first detailed experimental 3D Fermi surface recorded in the full Brillouin zone along the kz-direction as well as other experimental results featuring multiple advantages of our technique. In combination with various light sources, including synchrotron radiation, our methodology and instrumentation offer new opportunities for high-resolution ARPES in the physical and life sciences.


1986 ◽  
Vol 83 ◽  
Author(s):  
S.-C. Lui ◽  
J. M. Mundenar ◽  
E. W. Plummer ◽  
M. E. Mostoller ◽  
R. M. Nicklow ◽  
...  

ABSTRACTSurface and bulk electronic structure of the ordered NiAl alloy were measured using angle resolved photoelectron spectroscopy. The measured bulk d-bands (Ni like) were observed to be narrower than theoretically calculated d band widths which are 20 to 40% wider (depending upon what is used as a measure of the width). At least two surface states were observed on both the (110) and (111) surfaces. The nature of these surface states and their relationship to the bulk band structure is discussed. Dispersion of bulk phonons was measured by neutron scattering and fitted with a fourth nearest neighbor Born-von Karman model. Dipole active surface phonons on the (110) and (111) surfaces were observed by inelastic electron scattering and the frequencies also calculated assuming a truncated bulk surface. The calculated surface modes present a qualitative picture of the atomic displacement at each surface and also show that the surface phonon energy and intensity depends upon the structure of the surface.


2005 ◽  
Vol 04 (01) ◽  
pp. 225-245 ◽  
Author(s):  
IKUO TOKUE ◽  
KATSUYOSHI YAMASAKI ◽  
SATOSHI MINAMINO ◽  
SHINKOH NANBU

To elucidate the ionization dynamics, in particular the vibrational distribution, of H 2 O +(Ã) produced by photoionization and the Penning ionization of H 2 O and D 2 O with He *(2 3S) atoms, Franck–Condon factors (FCFs) were given for the [Formula: see text] ionization, and the transition probabilities were presented for the [Formula: see text] emission. The FCFs were obtained by quantum vibrational calculations using the three-dimensional potential energy surfaces (PESs) of [Formula: see text] and [Formula: see text] electronic states. The global PESs were determined by the multi-reference configuration interaction calculations with the Davidson correction and the interpolant moving least squares method combined with the Shepard interpolation. The obtained FCFs exhibit that the [Formula: see text] state primarily populates the vibrational ground state, as its equilibrium geometry is almost equal to that of [Formula: see text], while the bending mode (ν2) is strongly enhanced for the H 2 O +(Ã) state; the maximums in the population of H 2 O + and D 2 O + are approximately v2 = 11–12 and 15–17, respectively. These results are consistent with the distributions observed by photoelectron spectroscopy. Transition probabilities for the [Formula: see text] system of H 2 O + and D 2 O + show that the bending progressions consist primarily of the [Formula: see text] emission, with combination bands from the (1, v′2 = 4–8, 0) level being next most important.


Sign in / Sign up

Export Citation Format

Share Document