LÉVY–LAPLACIAN AND THE GAUGE FIELDS

Author(s):  
BORIS O. VOLKOV

The following statement is proved for the Lévy–Laplacian defined as the Cesàro mean of second-order directional derivatives: a connection form on a base Riemannian C3-smooth manifold satisfies the Yang–Mills equations if and only if the parallel transport associated with the connection is Lévy harmonic. This statement is an improvement of the well-known result of L. Accardi, P. Gibilisco and I. V. Volovich2 (see also Ref. 1).

Author(s):  
Boris O. Volkov

The relationship between the Yang–Mills equations and the stochastic analogue of Lévy differential operators is studied. The value of the stochastic Lévy–Laplacian is found by means of Cèsaro averaging of directional derivatives on the stochastic parallel transport. It is shown that the Yang–Mills equations and the Lévy–Laplace equation for such Laplacian are not equivalent in contrast to the deterministic case. An equation equivalent to the Yang–Mills equations is obtained. The equation contains the Lévy divergence. It is proved that the Yang–Mills action functional can be represented as an infinite-dimensional analogue of the Direchlet functional of a chiral field. This analogue is also derived using Cèsaro averaging.


Author(s):  
Boris O. Volkov

We study the Lévy infinite-dimensional differential operators (differential operators defined by the analogy with the Lévy Laplacian) and their relationship to the Yang–Mills equations. We consider the parallel transport on the space of curves as an infinite-dimensional analogue of chiral fields and show that it is a solution to the system of differential equations if and only if the associated connection is a solution to the Yang–Mills equations. This system is an analogue of the equations of motion of chiral fields and contains the Lévy divergence. The systems of infinite-dimensional equations containing Lévy differential operators, that are equivalent to the Yang–Mills–Higgs equations and the Yang–Mills–Dirac equations (the equations of quantum chromodynamics), are obtained. The equivalence of two ways to define Lévy differential operators is shown.


1994 ◽  
Vol 03 (01) ◽  
pp. 139-144 ◽  
Author(s):  
G. BARNICH ◽  
M. HENNEAUX ◽  
R. TATAR

Recent results on the cohomological reformulation of the problem of consistent interactions between gauge fields are illustrated in the case of the Yang-Mills models. By evaluating the local BRST cohomology through descent equation techniques, it is shown (i) that there is a unique local, Poincaré invariant cubic vertex for free gauge vector fields which preserves the number of gauge symmetries to first order in the coupling constant; and (ii) that consistency to second order in the coupling constant requires the structure constants appearing in the cubic vertex to fulfill the Jacobi identity. The known uniqueness of the Yang-Mills coupling is therefore rederived through cohomological arguments.


2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Saiful R. Mondal ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Abstract The article considers several polynomials induced by admissible lower triangular matrices and studies their subordination properties. The concept generalizes the notion of stable functions in the unit disk. Several illustrative examples, including those related to the Cesàro mean, are discussed, and connections are made with earlier works.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


Optimization ◽  
2013 ◽  
Vol 64 (2) ◽  
pp. 389-407 ◽  
Author(s):  
L. Minchenko ◽  
A. Tarakanov

1993 ◽  
Vol 4 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Luigi di Accarde ◽  
Paolo Gibilisco ◽  
Igor V. Volovich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document