scholarly journals Improved Upper Bounds for the Order of Some Classes of Abelian Cayley and Circulant Graphs of Diameter Two

2017 ◽  
Vol 17 (03n04) ◽  
pp. 1741012
Author(s):  
ROBERT R. LEWIS

In the degree-diameter problem for Abelian Cayley and circulant graphs of diameter 2 and arbitrary degree d there is a wide gap between the best lower and upper bounds valid for all d, being quadratic functions with leading coefficient 1/4 and 1/2 respectively. Recent papers have presented constructions which increase the coefficient of the lower bound to be at or just below 3/8 for sparse sets of degree d related to primes of specific congruence classes. The constructions use the direct product of the multiplicative and additive subgroups of a Galois field and a specific cyclic group of coprime order. It was anticipated that this approach would be capable of yielding further improvement towards the upper bound value of 1/2. In this paper, however, it is proved that the quadratic coefficient of the order of families of Abelian Cayley graphs of this class of construction can never exceed the value of 3/8, establishing an asymptotic limit of 3/8 for the quadratic coefficient of families of extremal graphs of this class. By applying recent results from number theory these constructions can be extended to be valid for every degree above some threshold, establishing an improved asymptotic lower bound approaching 3/8 for general Abelian Cayley and circulant graphs of diameter 2 and arbitrary degree d.

2015 ◽  
Vol 26 (03) ◽  
pp. 367-380 ◽  
Author(s):  
Xingqin Qi ◽  
Edgar Fuller ◽  
Rong Luo ◽  
Guodong Guo ◽  
Cunquan Zhang

In spectral graph theory, the Laplacian energy of undirected graphs has been studied extensively. However, there has been little work yet for digraphs. Recently, Perera and Mizoguchi (2010) introduced the directed Laplacian matrix [Formula: see text] and directed Laplacian energy [Formula: see text] using the second spectral moment of [Formula: see text] for a digraph [Formula: see text] with [Formula: see text] vertices, where [Formula: see text] is the diagonal out-degree matrix, and [Formula: see text] with [Formula: see text] whenever there is an arc [Formula: see text] from the vertex [Formula: see text] to the vertex [Formula: see text] and 0 otherwise. They studied the directed Laplacian energies of two special families of digraphs (simple digraphs and symmetric digraphs). In this paper, we extend the study of Laplacian energy for digraphs which allow both simple and symmetric arcs. We present lower and upper bounds for the Laplacian energy for such digraphs and also characterize the extremal graphs that attain the lower and upper bounds. We also present a polynomial algorithm to find an optimal orientation of a simple undirected graph such that the resulting oriented graph has the minimum Laplacian energy among all orientations. This solves an open problem proposed by Perera and Mizoguchi at 2010.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1484
Author(s):  
Tong Zhang ◽  
Gaojie Chen ◽  
Shuai Wang ◽  
Rui Wang

In this article, the sum secure degrees-of-freedom (SDoF) of the multiple-input multiple-output (MIMO) X channel with confidential messages (XCCM) and arbitrary antenna configurations is studied, where there is no channel state information (CSI) at two transmitters and only delayed CSI at a multiple-antenna, full-duplex, and decode-and-forward relay. We aim at establishing the sum-SDoF lower and upper bounds. For the sum-SDoF lower bound, we design three relay-aided transmission schemes, namely, the relay-aided jamming scheme, the relay-aided jamming and one-receiver interference alignment scheme, and the relay-aided jamming and two-receiver interference alignment scheme, each corresponding to one case of antenna configurations. Moreover, the security and decoding of each scheme are analyzed. The sum-SDoF upper bound is proposed by means of the existing SDoF region of two-user MIMO broadcast channel with confidential messages (BCCM) and delayed channel state information at the transmitter (CSIT). As a result, the sum-SDoF lower and upper bounds are derived, and the sum-SDoF is characterized when the relay has sufficiently large antennas. Furthermore, even assuming no CSI at two transmitters, our results show that a multiple-antenna full-duplex relay with delayed CSI can elevate the sum-SDoF of the MIMO XCCM. This is corroborated by the fact that the derived sum-SDoF lower bound can be greater than the sum-SDoF of the MIMO XCCM with output feedback and delayed CSIT.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Qin Guo ◽  
Mingxing Luo ◽  
Lixiang Li ◽  
Yixian Yang

From the perspectives of graph theory and combinatorics theory we obtain some new upper bounds on the number of encoding nodes, which can characterize the coding complexity of the network coding, both in feasible acyclic and cyclic multicast networks. In contrast to previous work, during our analysis we first investigate the simple multicast network with source rateh=2, and thenh≥2. We find that for feasible acyclic multicast networks our upper bound is exactly the lower bound given by M. Langberg et al. in 2006. So the gap between their lower and upper bounds for feasible acyclic multicast networks does not exist. Based on the new upper bound, we improve the computational complexity given by M. Langberg et al. in 2009. Moreover, these results further support the feasibility of signatures for network coding.


Author(s):  
Mahir Hassan ◽  
Amir Khajepour

In this work, the application of the Dykstra’s alternating projection method to find the minimum-2-norm solution for actuator forces is discussed in the case when lower and upper bounds are imposed on the actuator forces. The lower bound is due to specified pretension desired in the cables and the upper bound is due to the maximum allowable forces in the cables. This algorithm presents a systematic numerical method to determine whether or not a solution exists to the cable forces within these bounds and, if it does exist, calculate the minimum-2-norm solution for the cable forces for a given task force. This method is applied to an example 2-DOF translational cable-driven manipulator and a geometrical demonstration is presented.


2020 ◽  
Vol 22 ◽  
Author(s):  
Pranav Chinmay

There is no formula for general t-stack sortable permutations. Thus, we attempt to study them by establishing lower and upper bounds. Permutations that avoid certain pattern sets provide natural lower bounds. This paper presents a recurrence relation that counts the number of permutations that avoid the set (23451,24351,32451,34251,42351,43251). This establishes a lower bound on 3-stack sortable permutations. Additionally, the proof generalizes to provide lower bounds for all t-stack sortable permutations.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 98 ◽  
Author(s):  
Muhammad Kamran Jamil ◽  
Ioan Tomescu ◽  
Muhammad Imran ◽  
Aisha Javed

For a graph G without isolated vertices, the inverse degree of a graph G is defined as I D ( G ) = ∑ u ∈ V ( G ) d ( u ) − 1 where d ( u ) is the number of vertices adjacent to the vertex u in G. By replacing − 1 by any non-zero real number we obtain zeroth-order general Randić index, i.e., 0 R γ ( G ) = ∑ u ∈ V ( G ) d ( u ) γ , where γ ∈ R − { 0 } . Xu et al. investigated some lower and upper bounds on I D for a connected graph G in terms of connectivity, chromatic number, number of cut edges, and clique number. In this paper, we extend their results and investigate if the same results hold for γ < 0 . The corresponding extremal graphs have also been identified.


2018 ◽  
Vol 52 (4-5) ◽  
pp. 1123-1145
Author(s):  
Alain Quilliot ◽  
Djamal Rebaine ◽  
Hélène Toussaint

We deal here with theLinear Arrangement Problem(LAP) onintervalgraphs, any interval graph being given here together with its representation as theintersectiongraph of some collection of intervals, and so with relatedprecedenceandinclusionrelations. We first propose a lower boundLB, which happens to be tight in the case ofunit intervalgraphs. Next, we introduce the restriction PCLAP of LAP which is obtained by requiring any feasible solution of LAP to be consistent with theprecedencerelation, and prove that PCLAP can be solved in polynomial time. Finally, we show both theoretically and experimentally that PCLAP solutions are a good approximation for LAP onintervalgraphs.


2000 ◽  
Vol 32 (01) ◽  
pp. 244-255 ◽  
Author(s):  
V. Dumas ◽  
A. Simonian

We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.


2012 ◽  
Vol 33 (3) ◽  
pp. 693-712 ◽  
Author(s):  
M.-C. ARNAUD

AbstractWe consider locally minimizing measures for conservative twist maps of the $d$-dimensional annulus and for Tonelli Hamiltonian flows defined on a cotangent bundle $T^*M$. For weakly hyperbolic measures of such type (i.e. measures with no zero Lyapunov exponents), we prove that the mean distance/angle between the stable and unstable Oseledets bundles gives an upper bound on the sum of the positive Lyapunov exponents and a lower bound on the smallest positive Lyapunov exponent. We also prove some more precise results.


Sign in / Sign up

Export Citation Format

Share Document