Solving the k-Coverage and m-Connected Problem in Wireless Sensor Networks through the Imperialist Competitive Algorithm

2020 ◽  
Vol 20 (01) ◽  
pp. 2050002
Author(s):  
HEMMAT SHEIKHI ◽  
WAFA BARKHODA

This study presents a new method based on the imperialist competitive algorithm (ICA-based) to solve the k-coverage and m-connected problem in wireless sensor networks (WSNs) through the least sensor node count, where the candidate positions for placing nodes are pre-specified. This dual featured problem in WSNs is a nondeterministic polynomial (NP)-hard problem therefore, ICA the social-inspired evolutionary algorithm is assessed and ICA-based scheme is designed to solve the problem. This newly proposed ICA-based scheme provides an efficient algorithm for representing the imperialistic competition among some of the best solutions to the problem in order to decrease the network cost. The mathematical formulation is presented for the node placement problem. The main issue of concern here is the deployed sensor node count. The simulation results confirm that ICA-based method can reduce the required sensor node count unlike other genetic-based and biogeography-based evolutionary algorithms. The experimental results are presented for WSN_Random and WSN_Grid scenarios.

Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


Sign in / Sign up

Export Citation Format

Share Document