scholarly journals A Data-Based Fault-Detection Model for Wireless Sensor Networks

2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.

Sensor nodes are exceedingly energy compelled instrument, since it is battery operated instruments. In wsn network, every node is liable to the data transmission through the wireless mode [1]. Wireless sensor networks (WSN) is made of a huge no. of small nodes with confined functionality. The essential theme of the wireless sensor network is energy helpless and the WSN is collection of sensor. Every sensor terminal is liable to sensing, store and information clan and send it forwards into sink. The communication within the node is done via wireless network [3].Energy efficiency is the main concentration of a desining the better routing protocol. LEACH is a protocol. This is appropriate for short range network, since imagine that whole sensor node is capable of communication with inter alia and efficient to access sink node, which is not always correct for a big network. Hence, coverage is a problem which we attempt to resolve [6]. The main focus within wireless sensor networks is to increase the network life-time span as much as possible, so that resources can be utilizes efficiently and optimally. Various approaches which are based on the clustering are very much optimal in functionality. Life-time of the network is always connected with sensor node’s energy implemented at distant regions for stable and defect bearable observation [10].


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammadjavad Abbasi ◽  
Muhammad Shafie Bin Abd Latiff ◽  
Hassan Chizari

Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Youngtae Jo

To effectively transfer sensing data to a sink node, system designers should consider the characteristic of wireless sensor networks in the way of data transmission. In particular, sensor nodes surrounding a fixed sink node have routinely suffered from concentrated network traffic so that their battery energy is rapidly exhausted. The lifetime of wireless sensor networks decreases due to the rapid power consumption of these sensor nodes. To address the problem, a mobile sink model has recently been chosen for traffic load distribution among sensor nodes. However, since a mobile sink continuously changes its location in sensor networks, it has a time limitation to communicate with each sensor node and unstable signal strength from each sensor node. Therefore, fair and stable data collection policy between a mobile sink and sensor nodes is necessary in this circumstance. In this paper, we propose a new scheduling policy to support fair and stable data collection for a mobile sink in wireless sensor networks. The proposed policy performs data collection scheduling based on the communication availability of data transmission between sensor nodes and a mobile sink.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


Author(s):  
Asfandyar Khan ◽  
Azween Abdullah ◽  
Nurul Hasan

Wireless sensor networks (WSANs) are increasingly being used and deployed to monitor the surrounding physical environments and detect events of interest. In wireless sensor networks, energy is one of the primary issues and requires the conservation of energy of the sensor nodes, so that network lifetime can be maximized. It is not recommended as a way to transmit or store all data of the sensor nodes for analysis to the end user. The purpose of this “Event Based Detection” Model is to simulate the results in terms of energy savings during field activities like a fire detection system in a remote area or habitat monitoring, and it is also used in security concerned issues. The model is designed to detect events (when occurring) of significant changes and save the data for further processing and transmission. In this way, the amount of transmitted data is reduced, and the network lifetime is increased. The main goal of this model is to meet the needs of critical condition monitoring applications and increase the network lifetime by saving more energy. This is useful where the size of the network increases. Matlab software is used for simulation.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4625 ◽  
Author(s):  
Km Renuka ◽  
Sachin Kumar ◽  
Saru Kumari ◽  
Chien-Ming Chen

Wireless sensor networks (WSNs) are of prominent use in unmanned surveillance applications. This peculiar trait of WSNs is actually the underlying technology of various applications of the Internet of Things (IoT) such as smart homes, smart cities, smart shopping complexes, smart traffic, smart health, and much more. Over time, WSNs have evolved as a strong base for laying the foundations of IoT infrastructure. In order to address the scenario in which a user wants to access the real-time data directly from the sensor node in wireless sensor networks (WSNs), Das recently proposed an anonymity-preserving three-factor authentication protocol. Das’s protocol is suitable for resource-constrained sensor nodes because it only uses lightweight cryptographic primitives such as hash functions and symmetric encryption schemes as building blocks. Das’s protocol is claimed to be secure against different known attacks by providing formal security proof and security verification using the Automated Validation of Internet Security Protocols and Applications tool. However, we find that Das’s protocol has the following security loopholes: (1) By using a captured sensor node, an adversary can impersonate a legal user to the gateway node, impersonate other sensor nodes to deceive the user, and the adversary can also decrypt all the cipher-texts of the user; (2) the gateway node has a heavy computational cost due to user anonymity and thus the protocol is vulnerable to denial of service (DoS) attacks. We overcome the shortcomings of Das’s protocol and propose an improved protocol. We also prove the security of the proposed protocol in the random oracle model. Compared with the other related protocols, the improved protocol enjoys better functionality without much enhancement in the computation and communication costs. Consequently, it is more suitable for applications in WSNs


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
Pabitra Mohan Khilar

This paper presents a parametric fault detection algorithm which can discriminate the persistence (permanent, intermittent, and transient) of faults in wireless sensor networks. The main characteristics of these faults are the amount the fault appears. We adopt this state-holding time to discriminate transient from intermittent faults. Neighbor-coordination-based approach is adopted, where faulty sensor nodes are detected based on comparisons between neighboring nodes and dissemination of the decision made at each node. Simulation results demonstrate the robustness of the work at varying transient fault rate.


Sign in / Sign up

Export Citation Format

Share Document