scholarly journals Linear Buckling Analysis of Perforated Cold-Formed Steel Storage Rack Columns by Means of the Generalised Beam Theory

2018 ◽  
Vol 18 (01) ◽  
pp. 1850004 ◽  
Author(s):  
M. Casafont ◽  
J. Bonada ◽  
M. M. Pastor ◽  
F. Roure ◽  
A. Susín

The investigation attempts to adapt a beam finite element procedure based on the Generalized Beam Theory (GBT) to the analysis of perforated columns. The presence of perforations is taken into account through the use of two beam elements with different properties for the non-perforated and perforated parts of the member. Each part is meshed with its corresponding finite element and, afterwards, they are linked by means of constraint equations. Linear buckling analyses on steel storage rack columns are carried out to demonstrate how the proposed procedure should be applied. Some practical issues are discussed, such as the GBT deformation modes to be included in the analyses, or the optimum finite element discretization. The resulting buckling loads are validated by comparison with the values obtained in analyses performed using shell finite element models. Finally, it is verified that the buckling loads produced with the proposed method are rather accurate.

2015 ◽  
Vol 15 (08) ◽  
pp. 1540021 ◽  
Author(s):  
Cilmar Basaglia ◽  
Dinar Camotim ◽  
Nuno Silvestre

This paper reports the results of an investigation on the use of Generalized Beam Theory (GBT) to assess the buckling and vibration behaviors of thin-walled members and frames built from cold-formed steel circular hollow section (CHS) profiles. Initially, the concepts and procedures involved in performing GBT buckling and vibration analyses are presented, paying particular attention to the derivation of the mass tensors that account for the influence of the inertia forces. Then, the formulation, numerical implementation and validation of a GBT-based beam finite element for isolated members are described. Next, the determination of the frame linear stiffness, geometric stiffness and mass matrices, which incorporate the influence of the frame joints, is addressed. Finally, in order to illustrate the application and capabilities of the proposed GBT finite element formulation, numerical results are presented and discussed — they concern the buckling and vibration behaviors of an "L-shaped" frame. For validation purposes, most GBT-based results are compared with values yielded by shell finite element analyses carried out in the code ANSYS.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Dinar Camotim

After providing a brief overview of a recently developed and validated elastoplastic post-buckling General-ised Beam Theory (GBT) formulation, the paper presents and discusses illustrative numerical results concerning three tubular members exhibiting bi-linear and non-linear material behaviours. The GBT results consist of equilibrium paths, modal participation diagrams, stress contours, displacement profiles and collapse mechanisms, most of which are compared with values obtained from ABAQUS shell finite element analyses. The GBT modal nature makes it possible to (i) acquire in-depth knowledge about the member behavioural mechanics at any given equilibrium state (elas-tic or elastic-plastic), as well as (ii) evidence the GBT computational efficiency (d.o.f. reduction of over 75%), partly due to the exclusion from the analyses of all deformation modes playing no role in a given member response.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


Sign in / Sign up

Export Citation Format

Share Document