The Influence of Variable Shell Thickness On the Vibrational Behavior of Composite Sandwich Conical Shells with Geodesic Lattice Cores

Author(s):  
M. Zarei ◽  
G. H. Rahimi ◽  
M. Hemmatnezhad

This paper investigates the vibrational behavior of sandwich conical shells with geodesic lattice core and variable skin thicknesses using analytical and numerical approaches. The filament wound conical shell has been considered to have varying skin thickness along the longitudinal direction. The smeared stiffener approach has been used to obtain the equivalent stiffness parameters due to the geodesic lattice core via the force and moment analyses of a unit cell. Superimposing the stiffness contribution of the stiffeners with those due to the inner and outer skins, one can calculate the equivalent stiffness of the whole structure. The equations of motion have been formulated based on the first-order shear deformation theory. The power series method has been implemented for extracting the natural frequencies of vibration. To validate the analytical results, a 3-D finite element model has been provided which is then used to conduct an extensive parametric study. The comparisons indicate an acceptable agreement between the two approaches. Moreover, the effect of variable skin thickness on the natural frequency has been examined. Furthermore, the influences of skin lamination angle, semi-vertex angle of the cone and stiffeners orientation angle have been discussed. The obtained results can be used for future relevant researches.

2021 ◽  
pp. 109963622110204
Author(s):  
Mehdi Zarei ◽  
Gholamhossien Rahimi ◽  
Davoud Shahgholian-Ghahfarokhi

The free vibration behavior of sandwich conical shells with reinforced cores is investigated in the present study using experimental, analytical, and numerical methods. A new effective smeared method is employed to superimpose the stiffness contribution of skins with those of the stiffener in order to achieve equivalent stiffness of the whole structure. The stiffeners are also considered as a beam to support shear forces and bending moments in addition to the axial forces. Using Donnell’s shell theory and Galerkin method, the natural frequencies of the sandwich shell are subsequently derived. To validate analytical results, experimental modal analysis (EMA) is further conducted on the conical sandwich shell. For this purpose, a method is designed for manufacturing specimens through the filament winding process. For more validation, a finite element model (FEM) is built. The results revealed that all the validations were in good agreement with each other. Based on these analyses, the influence of the cross-sectional area of the stiffeners, the semi-vertex angle of the cone, stiffener orientation angle, and the number of stiffeners are investigated as well. The results achieved are novel and can be thus employed as a benchmark for further studies.


Author(s):  
Mohammad Hadi Izadi ◽  
Hosseini Hashemi Shahrokh ◽  
Moharam Habibnejad Korayem

This paper investigates critical buckling loads in joined conical shells under axial compression. An analytical approach has been applied to study classical linear buckling of joined cones that are made of cross-ply fiber reinforced laminates. The governing equations have been extracted using first-order shear deformation theory (FSDT), and an analytical solution has been applied to extract critical buckling loads. Accordingly, the system of partial differential equations has been solved via separation of variables using Fourier expansion and power series method. The effects of the number of layers, lamination sequences, semi-vertex angles, shell thicknesses, shell lengths and boundary conditions on the stability of joined cones have been examined. For validation, the specific examples of the present study have been compared to previous studies. Using ABAQUSE/CAE software (a FEM-based software), the results of finite element have been extracted. The present method is in good agreement with the finite element and other research results. Finally, the differences in classical shell theory (CST) of Donnell type and first-order shear deformation theory have been discussed for different shell thicknesses.


Author(s):  
Mohammad Hadi Izadi ◽  
Hosseini Hashemi Shahrokh ◽  
Moharam Habibnejad Korayem

This paper investigates critical buckling loads in joined conical shells under axial compression. An analytical approach has been applied to study classical linear buckling of joined cones that are made of cross-ply fiber reinforced laminates. The governing equations have been extracted using first-order shear deformation theory (FSDT), and an analytical solution has been applied to extract critical buckling loads. Accordingly, the system of partial differential equations has been solved via separation of variables using Fourier expansion and power series method. The effects of the number of layers, lamination sequences, semi-vertex angles, shell thicknesses, shell lengths and boundary conditions on the stability of joined cones have been examined. For validation, the specific examples of the present study have been compared to previous studies. Using ABAQUSE/CAE software (a FEM-based software), the results of finite element have been extracted. The present method is in good agreement with the finite element and other research results. Finally, the differences in classical shell theory (CST) of Donnell type and first-order shear deformation theory have been discussed for different shell thicknesses.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


Author(s):  
Shahin Mohammadrezazadeh ◽  
Ali Asghar Jafari

This paper investigates the nonlinear vibration responses of laminated composite conical shells surrounded by elastic foundations under S-S and C-C boundary conditions via an approximate approach. The laminated composite conical shells are modeled based on classical shell theory of Love employing von Karman nonlinear theory. Nonlinear vibration equation of the conical shells is extracted by handling Lagrange method. The linear and nonlinear vibration responses are obtained via an approximate method which combines Lindstedt-Poincare method with modal analysis. The validation of this study is carried out through the comparison of the results of this study with results of published literature. The effects of several parameters including the constants of elastic foundations, boundary conditions, total thickness, length, large edge radius and semi-vertex angle on the values of fundamental linear frequency and curves of amplitude parameter versus nonlinear frequency ratio for laminated composite conical shells with both S-S and C-C boundary conditions are investigated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419 ◽  
Author(s):  
Abdullah H. Sofiyev ◽  
Francesco Tornabene ◽  
Rossana Dimitri ◽  
Nuri Kuruoglu

The buckling behavior of functionally graded carbon nanotube reinforced composite conical shells (FG-CNTRC-CSs) is here investigated by means of the first order shear deformation theory (FSDT), under a combined axial/lateral or axial/hydrostatic loading condition. Two types of CNTRC-CSs are considered herein, namely, a uniform distribution or a functionally graded (FG) distribution of reinforcement, with a linear variation of the mechanical properties throughout the thickness. The basic equations of the problem are here derived and solved in a closed form, using the Galerkin procedure, to determine the critical combined loading for the selected structure. First, we check for the reliability of the proposed formulation and the accuracy of results with respect to the available literature. It follows a systematic investigation aimed at checking the sensitivity of the structural response to the geometry, the proportional loading parameter, the type of distribution, and volume fraction of CNTs.


2020 ◽  
pp. 109963622092508 ◽  
Author(s):  
Atteshamuddin S Sayyad ◽  
Yuwaraj M Ghugal

In this paper, higher order closed-formed analytical solutions for the buckling analysis of functionally graded sandwich rectangular plates are obtained using a unified shear deformation theory. Three-layered sandwich plates with functionally graded skins on top and bottom; and isotropic core in the middle are considered for the study. The material properties of skins are varied through the thickness according to the power-law distribution. Two types of sandwich plates (hardcore and softcore) are considered for the detail numerical study. A unified shear deformation theory developed in the present study uses polynomial and non-polynomial-type shape functions in terms of thickness coordinate to account for the effect of shear deformation. In the present theory, the in-plane displacements consider the combined effect of bending rotation and shear rotation. The parabolic shear deformation theory of Reddy and the first-order shear deformation theory of Mindlin are the particular cases of the present unified formulation. The governing differential equations are evaluated from the principle of virtual work. Closed-formed analytical solutions are obtained by using the Navier’s technique. The non-dimensional critical buckling load factors are obtained for various power-law coefficients, aspect ratios and skin-core-skin thickness ratios.


Sign in / Sign up

Export Citation Format

Share Document