Erratum: Nonlinear Free and Forced Vibrations of In-Plane Bi-Directional Functionally Graded Rectangular Plate with Temperature-Dependent Properties

2021 ◽  
Vol 21 (04) ◽  
pp. 2192001
Author(s):  
Soheil Hashemi ◽  
Ali Asghar Jafari
2020 ◽  
Vol 20 (08) ◽  
pp. 2050097
Author(s):  
Soheil Hashemi ◽  
Ali Asghar Jafari

In this paper, the nonlinear free and forced vibrations analysis of in-plane bi-directional functionally graded (IBFG) rectangular plate with temperature-dependent properties is studied for the first time. For this purpose, with the aid of von Karman nonlinearity strain–displacement relations, the partial differential equations of motion are developed based on the first-order shear deformation theory (FSDT). Then, the nonlinear partial differential equations are transformed into the time-dependent nonlinear ordinary differential equations by applying the Galerkin method. The primary and super harmonic resonances are analyzed by the method of multiple scales (MMS). The material properties are assumed to be temperature-dependent and graded in the thickness direction according to the power-law distribution. The effects of some system parameters, such as vibration amplitude, volume fraction indexes, length-to-thickness ratio, temperature and aspect ratio on the nonlinear frequency and also frequency responses curve, are discussed in detail. To validate the analysis, the results of this paper are compared with the published data and good agreements are found.


Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


2015 ◽  
Vol 1096 ◽  
pp. 297-301
Author(s):  
Gui Ming Rong ◽  
Hiroyuki Kisu

A formulation using the deviatoric stress and the continuity equation is extended to the analysis of the dynamic response of functionally graded materials (FGMs) subjected to a thermal shock by smoothed particle hydrodynamics (SPH), in which temperature dependent properties of materials are considered. Several dynamic thermal stress problems are analyzed to investigate the fluctuation of thermal stress at the initial stage under three types of thermal conditions, with the addition of two kinds of mechanical boundary conditions.


2017 ◽  
Vol 24 (3) ◽  
pp. 455-469 ◽  
Author(s):  
Pham Hong Cong ◽  
Pham Thi Ngoc An ◽  
Nguyen Dinh Duc

AbstractThis article investigates the nonlinear stability of eccentrically stiffened moderately thick plates made of functionally graded materials (FGM) subjected to in-plane compressive, thermo-mechanical loads. The equilibrium and compatibility equations for the moderately thick plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections, temperature-dependent properties with Pasternak type elastic foundations. By applying the Galerkin method and using a stress function, the effects of material and geometrical properties, temperature-dependent material properties, elastic foundations, boundary conditions, and eccentric stiffeners on the buckling and post-buckling loading capacity of the eccentrically stiffened moderately thick FGM plates in thermal environments are analyzed and discussed.


2016 ◽  
Vol 829 ◽  
pp. 90-94
Author(s):  
Seok Hyeon Kang ◽  
Ji Hwan Kim

In thermal environment, vibration behavior of Functionally Graded Materials (FGMs) plates is investigated, and the materials are developed with mixing ceramic and metal. Present study is based on the first-order shear deformation theory of plate. Then, mixture methods such as Power law (P-) and Sigmoid (S-) models are chosen. According to a volume fraction, the material properties are assumed to vary continuously through the thickness direction and to be temperature dependent properties. Further, thermal effects are considered as uniform temperature rise and one dimensional heat transfer. For the structure analysis, FEM is used to obtain the natural frequencies based on the virtual work principle.


2017 ◽  
Vol 24 (11) ◽  
pp. 2327-2343 ◽  
Author(s):  
Rasool Moradi-Dastjerdi ◽  
Hamed Momeni-Khabisi

In this paper, free and forced vibrations, and also resonance and pulse phenomena in sandwich plates with an isotropic core and composite reinforced by wavy carbon nanotube (CNT) face sheets are studied based on a mesh-free method and first order shear deformation theory (FSDT). The sandwich plates are resting on Pasternak elastic foundation and subjected to periodic loads. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak’s elastic foundation coefficients, sandwich plate thickness, face sheets thickness, plate aspect ratio and time depended force are investigated on the free and forced vibrations, and resonance behavior of the sandwich plates with wavy CNT-reinforced face sheets.


Sign in / Sign up

Export Citation Format

Share Document