MOTION DETECTION FROM TIME-VARIED BACKGROUND

2002 ◽  
Vol 02 (02) ◽  
pp. 163-178 ◽  
Author(s):  
YING REN ◽  
CHIN SENG CHUA ◽  
YEONG KHING HO

This paper proposes a new background subtraction method for detecting moving objects (foreground) from a time-varied background. While background subtraction has traditionally worked well for stationary backgrounds, for a non-stationary viewing sensor, motion compensation can be applied but is difficult to realize to sufficient pixel accuracy in practice, and the traditional background subtraction algorithm fails. The problem is further compounded when the moving target to be detected/tracked is small, since the pixel error in motion compensating the background will subsume the small target. A Spatial Distribution of Gaussians (SDG) model is proposed to deal with moving object detection under motion compensation that has been approximately carried out. The distribution of each background pixel is temporally and spatially modeled. Based on this statistical model, a pixel in the current frame is classified as belonging to the foreground or background. For this system to perform under lighting and environmental changes over an extended period of time, the background distribution must be updated with each incoming frame. A new background restoration and adaptation algorithm is developed for the time-varied background. Test cases involving the detection of small moving objects within a highly textured background and a pan-tilt tracking system based on a 2D background mosaic are demonstrated successfully.

2014 ◽  
Vol 556-562 ◽  
pp. 3549-3552
Author(s):  
Lian Fen Huang ◽  
Qing Yue Chen ◽  
Jin Feng Lin ◽  
He Zhi Lin

The key of background subtraction which is widely used in moving object detecting is to set up and update the background model. This paper presents a block background subtraction method based on ViBe, using the spatial correlation and time continuity of the video sequence. Set up the video sequence background model firstly. Then, update the background model through block processing. Finally employ the difference between the current frame and background model to extract moving objects.


Background subtraction is a key part to detect moving objects from the video in computer vision field. It is used to subtract reference frame to every new frame of video scenes. There are wide varieties of background subtraction techniques available in literature to solve real life applications like crowd analysis, human activity tracking system, traffic analysis and many more. Moreover, there were not enough benchmark datasets available which can solve all the challenges of subtraction techniques for object detection. Thus challenges were found in terms of dynamic background, illumination changes, shadow appearance, occlusion and object speed. In this perspective, we have tried to provide exhaustive literature survey on background subtraction techniques for video surveillance applications to solve these challenges in real situations. Additionally, we have surveyed eight benchmark video datasets here namely Wallflower, BMC, PET, IBM, CAVIAR, CD.Net, SABS and RGB-D along with their available ground truth. This study evaluates the performance of five background subtraction methods using performance parameters such as specificity, sensitivity, FNR, PWC and F-Score in order to identify an accurate and efficient method for detecting moving objects in less computational time.


Author(s):  
Rekha V. ◽  
Natarajan K. ◽  
Innila Rose J.

Background Subtraction of a foreground object in multimedia is one of the major preprocessing steps involved in many vision-based applications. The main logic for detecting moving objects from the video is difference of the current frame and a reference frame which is called “background image” and this method is known as frame differencing method. Background Subtraction is widely used for real-time motion gesture recognition to be used in gesture enabled items like vehicles or automated gadgets. It is also used in content-based video coding, traffic monitoring, object tracking, digital forensics and human-computer interaction. Now-a-days due to advent in technology it is noticed that most of the conferences, meetings and interviews are done on video calls. It’s quite obvious that a conference room like atmosphere is not always readily available at any point of time. To eradicate this issue, an efficient algorithm for foreground extraction in a multimedia on video calls is very much needed. This paper is not to just build Background Subtraction application for Mobile Platform but to optimize the existing OpenCV algorithm to work on limited resources on mobile platform without reducing the performance. In this paper, comparison of various foreground detection, extraction and feature detection algorithms are done on mobile platform using OpenCV. The set of experiments were conducted to appraise the efficiency of each algorithm over the other. The overall performances of these algorithms were compared on the basis of execution time, resolution and resources required.


Author(s):  
SHENGPING ZHANG ◽  
HONGXUN YAO ◽  
SHAOHUI LIU

Traditional background subtraction methods perform poorly when scenes contain dynamic backgrounds such as waving tree branches, spouting fountain, illumination changes, camera jitters, etc. In this paper, from the view of spatial context, we present a novel and effective dynamic background method with three contributions. First, we present a novel local dependency descriptor, called local dependency histogram (LDH), to effectively model the spatial dependencies between a pixel and its neighboring pixels. The spatial dependencies contain substantial evidence for differentiating dynamic background regions from moving objects of interest. Second, based on the proposed LDH, an effective approach to dynamic background subtraction is proposed, in which each pixel is modeled as a group of weighted LDHs. Labeling a pixel as foreground or background is done by comparing the LDH computed in current frame against its model LDHs. The model LDHs are adaptively updated by the current LDH. Finally, unlike traditional approaches using a fixed threshold to judge whether a pixel matches to its model, an adaptive thresholding technique is also proposed. Experimental results on a diverse set of dynamic scenes validate that the proposed method significantly outperforms traditional methods for dynamic background subtraction.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


2014 ◽  
Vol 533 ◽  
pp. 218-225 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

This paper describes computer vision algorithms for detection, identification, and tracking of moving objects in a video file. The problem of multiple object tracking can be divided into two parts; detecting moving objects in each frame and associating the detections corresponding to the same object over time. The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture models. The motion of each track is estimated by a Kalman filter. The video tracking algorithm was successfully tested using the BIWI walking pedestrians datasets [. The experimental results show that system can operate in real time and successfully detect, track and identify multiple targets in the presence of partial occlusion.


2012 ◽  
Vol 239-240 ◽  
pp. 1000-1003
Author(s):  
Zhao Quan Cai ◽  
Hui Hu ◽  
Tao Xu ◽  
Wei Luo ◽  
Yi Cheng He

It is urgent to study how to effectively identify color of moving objects from the video in the information era. In this paper, we present the color identification methods for moving objects on fixed camera. One kind of the methods is background subtraction that recognizes the foreground objects by compare the difference of pixel luminance between the current image and the background image at the same coordinates. Another kind is based on the statistics of HSV color and color matching which makes the detection more similar to the color identification of the human beings. According to the experiment results, after the completion of the background modelling, our algorithm of background subtraction, statistics of the HSV color and the color matching have strong color recognition ability on the moving objects of video.


2015 ◽  
Vol 734 ◽  
pp. 203-206
Author(s):  
En Zeng Dong ◽  
Sheng Xu Yan ◽  
Kui Xiang Wei

In order to enhance the rapidity and the accuracy of moving target detection and tracking, and improve the speed of the algorithm on the DSP (digital signal processor), an active visual tracking system was designed based on the gaussian mixture background model and Meanshift algorithm on DM6437. The system use the VLIB library developed by TI, and through the method of gaussian mixture background model to detect the moving objects and use the Meanshift tracking algorithm based on color features to track the target in RGB space. Finally, the system is tested on the hardware platform, and the system is verified to be quickness and accuracy.


2002 ◽  
Vol 16 (4) ◽  
pp. 427-435
Author(s):  
Dong-Kyu Kim ◽  
Sang-Bong Kim ◽  
Hak-Kyeong Kim

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7243
Author(s):  
Sebastian Słomiński ◽  
Magdalena Sobaszek

The importance of reducing discomfort glare during the dynamic development of high luminance LEDs is growing fast. Smart control systems also offer great opportunities to reduce electricity consumption for lighting purposes. Currently, dynamic “intelligent” lighting systems are a rapidly developing field. These systems, consisting of cameras and lighting units, such as moving heads or multimedia projectors, are powerful tools that provide a lot of opportunities. The aim of this research is to demonstrate the possibilities of using the projection light in dynamic lighting systems that enable the reduction of discomfort glare and the light pollution phenomenon. The proposed system allows darkening or reducing the luminance of some sensitive zones, such as the eyes or the head, in real-time. This paper explores the development of the markerless object tracking system. The precise identification of the position and geometry of objects and the human figure is used for dynamic lighting and mapping with any graphic content. Time measurements for downloading the depth maps, as well as for identifying the human body’s position and pose, have been performed. The analyses of the image transformation times have been carried out in relation to the resolution of the images displayed by the projector. The total computation time related to object detection and image display translates directly into the precision of fitting the projection image to a moving object and has been shown.


Sign in / Sign up

Export Citation Format

Share Document