Signal-to-Noise Ratio Estimation in Electromyography Signals Contaminated with Electrocardiography Signals

2020 ◽  
Vol 19 (03) ◽  
pp. 2050027
Author(s):  
Thandar Oo ◽  
Pornchai Phukpattaranont

When electromyography (EMG) signals are collected from muscles in the torso, they can be perturbed by the electrocardiography (ECG) signals from heart activity. In this paper, we present a novel signal-to-noise ratio (SNR) estimate for an EMG signal contaminated by an ECG signal. We use six features that are popular in assessing EMG signals, namely skewness, kurtosis, mean average value, waveform length, zero crossing and mean frequency. The features were calculated from the raw EMG signals and the detail coefficients of the discrete stationary wavelet transform. Then, these features are used as inputs to a neural network that outputs the estimate of SNR. While we used simulated EMG signals artificially contaminated with simulated ECG signals as the training data, the testing was done with simulated EMG signals artificially contaminated with real ECG signals. The results showed that the waveform length determined with raw EMG signals was the best feature for estimating SNR. It gave the highest average correlation coefficient of 0.9663. These results suggest that the waveform length could be deployed not only in EMG recognition systems but also in EMG signal quality measurements when the EMG signals are contaminated by ECG interference.

Geophysics ◽  
1986 ◽  
Vol 51 (10) ◽  
pp. 1879-1892 ◽  
Author(s):  
P. L. McFadden ◽  
B. J. Drummond ◽  
S. Kravis

Multichannel geophysical data are usually stacked by calculating the average of the observations on all channels. In the Nth‐root stack, the average of the Nth root of each observation is raised to the Nth power, with the signs of the observations and average maintained. When N = 1, the process is identical to conventional linear stacking or averaging. Nth‐root stacking has been applied in the processing of seismic refraction and teleseismic array data. In some experiments and certain applications it is inferior to linear stacking, but in others it is superior. Although the variance for an Nth‐root stack is typically less than for a linear stack, the mean square error is larger, because of signal attenuation. The fractional amount by which the signal is attenuated depends in a complicated way on the number of data channels, the order (N) of the stack, the signal‐to‐noise ratio, and the noise distribution. Because the signal‐to‐noise ratio varies across a wavelet, peaking where the signal is greatest and approaching zero at the zero‐crossing points, the attenuation of the signal varies across a wavelet, thereby producing signal distortion. The main visual effect of the distortion is a sharpening of the legs of the wavelet. However, the attenuation of the signal is accompanied by a much greater attenuation of the background noise, leading to a significant contrast enhancement. It is this sharpening of the signal, accompanied by the contrast enhancement, that makes the technique powerful in beam‐steering applications of array data. For large values of N, the attenuation of the signal with low signal‐to‐noise ratios ultimately leads to its destruction. Nth‐root stacking is therefore particularly powerful in applications where signal sharpening and contrast enhancement are important but signal distortion is not.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3367 ◽  
Author(s):  
Piero Fontana ◽  
Neusa Rebeca Adão Martins ◽  
Martin Camenzind ◽  
Maximilian Boesch ◽  
Florent Baty ◽  
...  

Sleep monitoring in an unattended home setting provides important information complementing and extending the clinical polysomnography findings. The validity of a wearable textile electrocardiography (ECG)-belt has been proven in a clinical setting. For evaluation in a home setting, ECG signals and features were acquired from 12 patients (10 males and 2 females, showing an interquartile range for age of 48–59 years and for body mass indexes (BMIs) of 28.0–35.5) over 28 nights. The signal quality was assessed by artefacts detection, signal-to-noise ratio, and Poincaré plots. To assess the validity, the data were compared to previously reported data from the clinical setting. It was found that the artefact percentage was slightly reduced for the ECG-belt from 9.7% ± 14.7% in the clinical setting, to 7.5% ± 10.8% in the home setting. The signal-to-noise ratio was improved in the home setting and reached similar values to the gel electrodes in the clinical setting. Finally, it was found that for artefact percentages above 3%, Poincaré plots are instrumental to evaluate the origin of artefacts. In conclusion, the application of the ECG-belt in a home setting did not result in a reduction in signal quality compared to the ECG-belt used in the clinical setting, and thus provides new opportunities for patient pre-screening or follow-up.


2015 ◽  
Vol 7 (3) ◽  
pp. 300-303
Author(s):  
Andrius Gudiškis

This paper proposes an algorithm to reduce the noise distortion influence in heartbeat annotation detection in electrocardiogram (ECG) signals. Boundary estimation module is based on energy detector. Heartbeat detection is usually performed by QRS detectors that are able to find QRS regions in a ECG signal that are a direct representation of a heartbeat. However, QRS performs as intended only in cases where ECG signals have high signal to noise ratio, when there are more noticeable signal distortion detectors accuracy decreases. Proposed algorithm uses additional data, taken from arterial blood pressure signal which was recorded in parallel to ECG signal, and uses it to support the QRS detection process in distorted signal areas. Proposed algorithm performs as well as classical QRS detectors in cases where signal to noise ratio is high, compared to the heartbeat annotations provided by experts. In signals with considerably lower signal to noise ratio proposed algorithm improved the detection accuracy to up to 6%. Širdies ritmas yra vienas svarbiausių ir daugiausia informacijos apie pacientų būklę teikiančių fiziologinių parametrų. Širdies ritmas nustatomas iš elektrokardiogramos (EKG), atliekant QRS regionų, kurie yra interpretuojami kaip širdies dūžio ãtskaitos, paiešką. QRS regionų aptikimas yra klasikinis uždavinys, nagrinėjamas jau keletą dešimtmečių, todėl širdies dūžių nustatymo iš EKG signalų metodų yra labai daug. Deja, šie metodai tikslūs ir patikimi tik esant dideliam signalo ir triukšmo santykiui. Kai EKG signalai labai iškraipomi, QRS aptiktuvai ne visada gali atskirti QRS regioną, o kartais jį randa ten, kur iš tikro jo būti neturėtų. Straipsnyje siūlomas algoritmas, kurį taikant sumažinama triukšmo įtaka nustatant iš EKG signalų QRS regionus. Tam naudojamas QRS aptiktuvas, kartu prognozuojantis širdies dūžio atskaitą. Remiamasi arterinio kraujo spaudimo signalo duomenimis, renkama atskaitų statistika ir atliekama jos analizė.


2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Febri Liantoni ◽  
Nanik Suciati ◽  
Chastine Fatichah

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio


2001 ◽  
Vol 203 ◽  
pp. 86-89
Author(s):  
A. H. Andrei ◽  
E. Reis Neto ◽  
J. L. Penna ◽  
W. G. de Almeida ◽  
V. A. d'Ávila ◽  
...  

The metrological qualities render the modified CCD solar astrolabe a very reliable instrument for the difficult conditions of solar diameter measurements. At O.N. an average value of 959”.04 ± 0”.01 is found, for λ = 563.5nm, and an effective bandpass of 168nm. To improve the signal to noise ratio, the images are treated for flat field. This includes distortions brought about by the COHU 4710 camera, the astrolabe optics, and by the system of filters that cut down the incoming solar light. The extensive series observed (over 12000 independent measures) is examined, using a CLEAN periodogram algorithm. The outcome shows periods reconcilable with the solar activity and geometry of observation.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Sign in / Sign up

Export Citation Format

Share Document