scholarly journals Applicability of a Textile ECG-Belt for Unattended Sleep Apnoea Monitoring in a Home Setting

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3367 ◽  
Author(s):  
Piero Fontana ◽  
Neusa Rebeca Adão Martins ◽  
Martin Camenzind ◽  
Maximilian Boesch ◽  
Florent Baty ◽  
...  

Sleep monitoring in an unattended home setting provides important information complementing and extending the clinical polysomnography findings. The validity of a wearable textile electrocardiography (ECG)-belt has been proven in a clinical setting. For evaluation in a home setting, ECG signals and features were acquired from 12 patients (10 males and 2 females, showing an interquartile range for age of 48–59 years and for body mass indexes (BMIs) of 28.0–35.5) over 28 nights. The signal quality was assessed by artefacts detection, signal-to-noise ratio, and Poincaré plots. To assess the validity, the data were compared to previously reported data from the clinical setting. It was found that the artefact percentage was slightly reduced for the ECG-belt from 9.7% ± 14.7% in the clinical setting, to 7.5% ± 10.8% in the home setting. The signal-to-noise ratio was improved in the home setting and reached similar values to the gel electrodes in the clinical setting. Finally, it was found that for artefact percentages above 3%, Poincaré plots are instrumental to evaluate the origin of artefacts. In conclusion, the application of the ECG-belt in a home setting did not result in a reduction in signal quality compared to the ECG-belt used in the clinical setting, and thus provides new opportunities for patient pre-screening or follow-up.

2020 ◽  
Vol 19 (03) ◽  
pp. 2050027
Author(s):  
Thandar Oo ◽  
Pornchai Phukpattaranont

When electromyography (EMG) signals are collected from muscles in the torso, they can be perturbed by the electrocardiography (ECG) signals from heart activity. In this paper, we present a novel signal-to-noise ratio (SNR) estimate for an EMG signal contaminated by an ECG signal. We use six features that are popular in assessing EMG signals, namely skewness, kurtosis, mean average value, waveform length, zero crossing and mean frequency. The features were calculated from the raw EMG signals and the detail coefficients of the discrete stationary wavelet transform. Then, these features are used as inputs to a neural network that outputs the estimate of SNR. While we used simulated EMG signals artificially contaminated with simulated ECG signals as the training data, the testing was done with simulated EMG signals artificially contaminated with real ECG signals. The results showed that the waveform length determined with raw EMG signals was the best feature for estimating SNR. It gave the highest average correlation coefficient of 0.9663. These results suggest that the waveform length could be deployed not only in EMG recognition systems but also in EMG signal quality measurements when the EMG signals are contaminated by ECG interference.


Author(s):  
M. Wan ◽  
Y. Guo ◽  
S. Li ◽  
T. Liu

Abstract. The final output signal quality of TDICCD is related to the key parameters such as working mode, output mode, signal-to-noise ratio, dynamic range and so on. We can improve these parameters of TDICCD by reasonably designing the sensor clocking. Therefore, this text discussed four methods of improved TDICCD sensor clocking to solve some problem in TDICCD application based on using the principle of TDICCD. The technique of TDICCD Taps merging can reduce the number of TDICCD Taps, which helps to reduce the size of the TDICCD rear-end circuit significantly; The technique of TDICCD continuous transfer clocking can improve the charge transfer efficiency, which helps to promote the final signal-to-noise ratio; The technique of pixel binning clocking can enlarge the dynamic range of image; The technique of TDICCD area-array working mode can extend the field of TDICCD working; The principle, derivation process, clocking sequence diagram and application range of these clocking design schemes are given in this paper. At the same time, it also explains its actual effect and the matters to be noted.


2015 ◽  
Vol 7 (3) ◽  
pp. 300-303
Author(s):  
Andrius Gudiškis

This paper proposes an algorithm to reduce the noise distortion influence in heartbeat annotation detection in electrocardiogram (ECG) signals. Boundary estimation module is based on energy detector. Heartbeat detection is usually performed by QRS detectors that are able to find QRS regions in a ECG signal that are a direct representation of a heartbeat. However, QRS performs as intended only in cases where ECG signals have high signal to noise ratio, when there are more noticeable signal distortion detectors accuracy decreases. Proposed algorithm uses additional data, taken from arterial blood pressure signal which was recorded in parallel to ECG signal, and uses it to support the QRS detection process in distorted signal areas. Proposed algorithm performs as well as classical QRS detectors in cases where signal to noise ratio is high, compared to the heartbeat annotations provided by experts. In signals with considerably lower signal to noise ratio proposed algorithm improved the detection accuracy to up to 6%. Širdies ritmas yra vienas svarbiausių ir daugiausia informacijos apie pacientų būklę teikiančių fiziologinių parametrų. Širdies ritmas nustatomas iš elektrokardiogramos (EKG), atliekant QRS regionų, kurie yra interpretuojami kaip širdies dūžio ãtskaitos, paiešką. QRS regionų aptikimas yra klasikinis uždavinys, nagrinėjamas jau keletą dešimtmečių, todėl širdies dūžių nustatymo iš EKG signalų metodų yra labai daug. Deja, šie metodai tikslūs ir patikimi tik esant dideliam signalo ir triukšmo santykiui. Kai EKG signalai labai iškraipomi, QRS aptiktuvai ne visada gali atskirti QRS regioną, o kartais jį randa ten, kur iš tikro jo būti neturėtų. Straipsnyje siūlomas algoritmas, kurį taikant sumažinama triukšmo įtaka nustatant iš EKG signalų QRS regionus. Tam naudojamas QRS aptiktuvas, kartu prognozuojantis širdies dūžio atskaitą. Remiamasi arterinio kraujo spaudimo signalo duomenimis, renkama atskaitų statistika ir atliekama jos analizė.


2011 ◽  
Vol 3 (1) ◽  
pp. 50-54
Author(s):  
Linas Sankauskas ◽  
Andrius Petrėnas ◽  
Vaidotas Marozas

The study presents the investigation results of synchro­nous averaging method and its application in estimation of impulse evoked otoacoustic emission signals (IEOAE). The method was analyzed using synthetic and real signals. Synthetic signals were modeled as the mixtures of deterministic compo­nent with noise realizations. Two types of noise were used: normal (Gaussian) and transient impulses dominated (Lapla­cian). Signal to noise ratio was used as the signal quality measure after processing. In order to account varying amplitude of deterministic component in the realizations weighted aver­aging method was investigated. Results show that the perfor­mance of synchronous averaging method is very similar in case of both types of noise Gaussian and Laplacian. Weighted aver­aging method helps to cope with varying deterministic component or noise level in case of nonhomogenous ensembles as is the case in IEOAE signal.


Author(s):  
Enas Wahab Abood ◽  
Zaid Ameen Abduljabbar ◽  
Mustafa A. Al Sibahee ◽  
Mohammed Abdulridha Hussain ◽  
Zaid Alaa Hussien

One of the things that must be considered when establishing a data exchange connection is to make that communication confidential and hide the file’s features when the snoopers intercept it. In this work, transformation (encoding) and steganography techniques are invested to produce an efficient system to secure communication for an audio signal by producing an efficient method to transform the signal into a red–green–blue (RGB) image. Subsequently, this image is hidden in a cover audio file by using the least significant bit (LSB) method in the spatial and transform domains using discrete wavelet transform. The audio files of the message and the cover are in *.wav format. The experimental results showed the success of the transformation in concealing audio secret messages, as well the remarkability of the stego signal quality in both techniques. A peak signal-to-noise ratio peak signal-to-noise ratio (PSNR) scored (20-26) dB with wavelet and (81-112) dB with LSB for cover file size 4.96 MB and structural similarity index metric structural similarity index metric (SSIM) has been used to measure the signal quality which gave 1 with LSB while wavelet was (0.9-1), which is satisfactory in all experimented signals with low time consumption. This work also used these metrics to compare the implementation of LSB and WAV.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7246
Author(s):  
Noemi Giordano ◽  
Samanta Rosati ◽  
Marco Knaflitz

The signal quality limits the applicability of phonocardiography at the patients’ domicile. This work proposes the signal-to-noise ratio of the recorded signal as its main quality metrics. Moreover, we define the minimum acceptable values of the signal-to-noise ratio that warrantee an accuracy of the derived parameters acceptable in clinics. We considered 25 original heart sounds recordings, which we corrupted by adding noise to decrease their signal-to-noise ratio. We found that a signal-to-noise ratio equal to or higher than 14 dB warrants an uncertainty of the estimate of the valve closure latencies below 1 ms. This accuracy is higher than that required by most clinical applications. We validated the proposed method against a public database, obtaining results comparable to those obtained on our sample population. In conclusion, we defined (a) the signal-to-noise ratio of the phonocardiographic signal as the preferred metric to evaluate its quality and (b) the minimum values of the signal-to-noise ratio required to obtain an uncertainty of the latency of heart sound components compatible with clinical applications. We believe these results are crucial for the development of home monitoring systems aimed at preventing acute episodes of heart failure and that can be safely operated by naïve users.


2017 ◽  
Vol 11 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Angela Agostinelli ◽  
Agnese Sbrollini ◽  
Luca Burattini ◽  
Sandro Fioretti ◽  
Francesco Di Nardo ◽  
...  

Background: Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality. Objective: Aim of this study was to evaluate the suitability of the Segmented-Beat Modulation Method to denoise indirect fetal electrocardiograms in order to achieve a signal-quality at least comparable to the direct ones. Method: Direct and indirect recordings, simultaneously acquired from 5 pregnant women during labor, were filtered with the Segmented-Beat Modulation Method and correlated in order to assess their morphological correspondence. Signal-to-noise ratio was used to quantify their quality. Results: Amplitude was higher in direct than indirect fetal electrocardiograms (median:104 µV vs. 22 µV; P=7.66·10-4), whereas noise was comparable (median:70 µV vs. 49 µV, P=0.45). Moreover, fetal electrocardiogram amplitude was significantly higher than affecting noise in direct recording (P=3.17·10-2) and significantly in indirect recording (P=1.90·10-3). Consequently, signal-to-noise ratio was initially higher for direct than indirect recordings (median:3.3 dB vs. -2.3 dB; P=3.90·10-3), but became lower after denoising of indirect ones (median:9.6 dB; P=9.84·10-4). Eventually, direct and indirect recordings were highly correlated (median: ρ=0.78; P<10-208), indicating that the two electrocardiograms were morphologically equivalent. Conclusion: Segmented-Beat Modulation Method is particularly useful for denoising of indirect fetal electrocardiogram and may contribute to the spread of this noninvasive technique in the clinical practice.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Sign in / Sign up

Export Citation Format

Share Document