Stability in distribution of stochastic Lotka–Volterra delay system under regime switching

2018 ◽  
Vol 18 (05) ◽  
pp. 1850041
Author(s):  
Yanchao Zang ◽  
Pingjun Hou ◽  
Yuzhu Tian

In this paper, we consider a class of stochastic competitive Lotka–Volterra system with time delay and Markovian switching. We prove that there exists a global positive solution under the random perturbation. Some sufficient conditions for the stability in distribution of the system are established which improved the classical case. An example is given to illustrate theoretical results.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

<p style='text-indent:20px;'>This paper focuses on the spread dynamics of an HIV/AIDS model with multiple stages of infection and treatment, which is disturbed by both white noise and telegraph noise. Switching between different environmental states is governed by Markov chain. Firstly, we prove the existence and uniqueness of the global positive solution. Then we investigate the existence of a unique ergodic stationary distribution by constructing suitable Lyapunov functions with regime switching. Furthermore, sufficient conditions for extinction of the disease are derived. The conditions presented for the existence of stationary distribution improve and generalize the previous results. Finally, numerical examples are given to illustrate our theoretical results.</p>


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Tingting Ma ◽  
Xinzhu Meng ◽  
Zhengbo Chang

We consider a stochastic one-predator-two-prey harvesting model with time delays and Lévy jumps in this paper. Using the comparison theorem of stochastic differential equations and asymptotic approaches, sufficient conditions for persistence in mean and extinction of three species are derived. By analyzing the asymptotic invariant distribution, we study the variation of the persistent level of a population. Then we obtain the conditions of global attractivity and stability in distribution. Furthermore, making use of Hessian matrix method and optimal harvesting theory of differential equations, the explicit forms of optimal harvesting effort and maximum expectation of sustainable yield are obtained. Some numerical simulations are given to illustrate the theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lan Wang ◽  
Yiping Dong ◽  
Da Xie ◽  
Hao Zhang

AbstractIn this paper, the synchronization control of a non-autonomous Lotka–Volterra system with time delay and stochastic effects is studied. The purpose is to firstly establish sufficient conditions for the existence of global positive solution by constructing a suitable Lyapunov function. Some synchronization criteria are then derived by designing an appropriate full controller and a pinning controller, respectively. Finally, an example is presented to illustrate the feasibility and validity of the main theoretical results based on the Field-Programmable Gate Array hardware simulation tool.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hai Zhang ◽  
Daiyong Wu ◽  
Jinde Cao

We discuss the delay-independent asymptotic stability of Caputo type fractional-order neutral differential systems with multiple discrete delays. Based on the algebraic approach and matrix theory, the sufficient conditions are derived to ensure the asymptotic stability for all time-delay parameters. By applying the stability criteria, one can avoid solving the roots of transcendental equations. The results obtained are computationally flexible and convenient. Moreover, an example is provided to illustrate the effectiveness and applicability of the proposed theoretical results.


Author(s):  
Jing Fu ◽  
Qixing Han ◽  
Daqing Jiang ◽  
Yanyan Yang

This paper discusses the dynamics of a Gilpin–Ayala competition model of two interacting species perturbed by white noise. We obtain the existence of a unique global positive solution of the system and the solution is bounded in [Formula: see text]th moment. Then, we establish sufficient and necessary conditions for persistence and the existence of an ergodic stationary distribution of the model. We also establish sufficient conditions for extinction of the model. Moreover, numerical simulations are carried out for further support of present research.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Haiying Ma ◽  
Xiao Jia ◽  
Ning Cai ◽  
Jianxiang Xi

In this paper, adaptive guaranteed-performance consensus control problems for multiagent systems with an adjustable convergence speed are investigated. A novel adaptive guaranteed-performance consensus protocol is proposed, where the communication weights can be adaptively regulated. By the state space decomposition method and the stability theory, sufficient conditions for guaranteed-performance consensus are obtained and the guaranteed-performance cost is determined. Moreover, the lower bound of the convergence coefficient for multiagent systems is deduced, which is linearly adjustable approximately by changing the adaptive control gain. Finally, simulation examples are introduced to demonstrate theoretical results.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Junmei Liu ◽  
Yonggang Ma

This paper discusses the asymptotic behavior of a class of three-species stochastic model with regime switching. Using the Lyapunov function, we first obtain sufficient conditions for extinction and average time persistence. Then, we prove sufficient conditions for the existence of stationary distributions of populations, and they are ergodic. Numerical simulations are carried out to support our theoretical results.


2021 ◽  
Vol 19 (3) ◽  
pp. 2179-2192
Author(s):  
Xunyang Wang ◽  
◽  
Canyun Huang ◽  
Yixin Hao ◽  
Qihong Shi ◽  
...  

<abstract><p>In this study, considering the effect of environment perturbation which is usually embodied by the alteration of contact infection rate, we formulate a stochastic epidemic mathematical model in which two different kinds of infectious diseases that spread simultaneously through both horizontal and vertical transmission are described. To indicate our model is well-posed and of biological significance, we prove the existence and uniqueness of positive solution at the beginning. By constructing suitable $ Lyapunov $ functions (which can be used to prove the stability of a certain fixed point in a dynamical system or autonomous differential equation) and applying $ It\hat{o} $'s formula as well as $ Chebyshev $'s inequality, we also establish the sufficient conditions for stochastic ultimate boundedness. Furthermore, when some main parameters and all the stochastically perturbed intensities satisfy a certain relationship, we finally prove the stochastic permanence. Our results show that the perturbed intensities should be no greater than a certain positive number which is up-bounded by some parameters in the system, otherwise, the system will be surely extinct. The reliability of theoretical results are further illustrated by numerical simulations. Finally, in the discussion section, we put forward two important and interesting questions left for further investigation.</p></abstract>


2020 ◽  
Vol 30 (06) ◽  
pp. 2050082
Author(s):  
Zhihui Ma

A delay-induced nonautonomous predator–prey system with variable habitat complexity is proposed based on mathematical and ecological issues, and this system is more realistic than the published models. Firstly, the permanence of the nonautonomous predation system is studied and some sufficient conditions are obtained. Secondly, the dynamical behaviors of the corresponding autonomous predation system are investigated, including the positivity and boundedness, and local and global stabilities. Thirdly, the properties of Hopf bifurcation of the autonomous predation system without/with delay are investigated and the explicit formulas which determine the stability and the direction of periodic solutions are obtained. Finally, a numerical example is given to test our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document