scholarly journals Adaptive Guaranteed-Performance Consensus Control for Multi-Agent Systems with an Adjustable Convergence Speed

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Haiying Ma ◽  
Xiao Jia ◽  
Ning Cai ◽  
Jianxiang Xi

In this paper, adaptive guaranteed-performance consensus control problems for multiagent systems with an adjustable convergence speed are investigated. A novel adaptive guaranteed-performance consensus protocol is proposed, where the communication weights can be adaptively regulated. By the state space decomposition method and the stability theory, sufficient conditions for guaranteed-performance consensus are obtained and the guaranteed-performance cost is determined. Moreover, the lower bound of the convergence coefficient for multiagent systems is deduced, which is linearly adjustable approximately by changing the adaptive control gain. Finally, simulation examples are introduced to demonstrate theoretical results.


Author(s):  
Qiuzhen Wang ◽  
Jiangping Hu ◽  
Yiyi Zhao ◽  
Bijoy Kumar Ghosh

This paper considers a consensus control of a general linear multi-agent system with time-varying communication delays. Since each agent can only use the relative output information from its neighbors, a reduced-order observer-based control protocol is proposed to guarantee consensus on the directed communication network. The stability of the closed-loop system is analyzed for the cases with uniform delays and nonuniform time-varying delays, respectively. Moreover, the upper bounds of the communication delays are obtained respectively for the two cases. Finally, two numerical examples are provided to illustrate the proposed theoretical results.



Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6953
Author(s):  
Sabyasachi Mondal ◽  
Antonios Tsourdos

This paper presents an idea of how new agents can be added autonomously to a group of existing agents without changing the existing communication topology among them. Autonomous agent addition to existing Multi-Agent Systems (MASs) can give a strategic advantage during the execution of a critical beyond visual line-of-sight (BVLOS) mission. The addition of the agent essentially means that new connections with existing agents are established. It is obvious that the consensus control energy increases as the number of agent increases considering a specific consensus protocol. The objective of this work is to establish the new connections in a way such that the consensus energy increase due to the new agents is minimal. The updated topology, including new connections, must contain a spanning tree to maintain the stability of the MASs network. The updated optimal topology is obtained by solving minimum additional consensus control energy using the Two-Dimensional Genetic Algorithm. The results obtained are convincing.



2021 ◽  
Vol 26 (4) ◽  
pp. 610-625
Author(s):  
Da Huang ◽  
Xiaolin Fan ◽  
Cheng Hu ◽  
Haijun Jiang

In this paper, a novel cluster consensus problem related with the bipartition of the graph of multi-agent systems (MASs) is studied. To track the virtual leaders and reach the expected consensus, a new type of pinning consensus protocol with aperiodic intermittent effects is designed according to the graph structure, and a new kind of aperiodic intermittent communication is defined. Moreover, the protocol is applied to construct networked systems with intermittent communications. Lyapunov functional is applied to get sufficient conditions for solving the multi-tracking problem under a dual subsystem framework. Finally, some numerical simulations are given to illustrate the effectiveness of the theoretical results.



2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Cui-Qin Ma ◽  
Yun-Bo Zhao ◽  
Wei-Guo Sun

Event-triggered bipartite consensus of single-integrator multi-agent systems is investigated in the presence of measurement noise. A time-varying gain function is proposed in the event-triggered bipartite consensus protocol to reduce the negative effects of the noise corrupted information processed by the agents. Using the state transition matrix, Ito^ formula, and the algebraic graph theory, necessary and sufficient conditions are given for the proposed protocol to yield mean square bipartite consensus. We find that the weakest communication requirement to ensure the mean square bipartite consensus under event-triggered protocol is that the signed digraph is structurally balanced and contains a spanning tree. Numerical examples validated the theoretical findings where the system shows no Zeno behavior.



2018 ◽  
Vol 40 (16) ◽  
pp. 4369-4381 ◽  
Author(s):  
Baojie Zheng ◽  
Xiaowu Mu

The formation-containment control problems of sampled-data second-order multi-agent systems with sampling delay are studied. In this paper, we assume that there exist interactions among leaders and that the leader’s neighbours are only leaders. Firstly, two different control protocols with sampling delay are presented for followers and leaders, respectively. Then, by utilizing the algebraic graph theory and matrix theory, several sufficient conditions are obtained to ensure that the leaders achieve a desired formation and that the states of the followers converge to the convex hull formed by the states of the leaders, i.e. the multi-agent systems achieve formation containment. Furthermore, an explicit expression of the formation position function is derived for each leader. An algorithm is provided to design the gain parameters in the protocols. Finally, a numerical example is given to illustrate the effectiveness of the obtained theoretical results.



2017 ◽  
Vol 40 (5) ◽  
pp. 1521-1528
Author(s):  
Yan Wang ◽  
Hong Zhou ◽  
Zhi-Wei Liu ◽  
Wenshan Hu ◽  
Wei Wang

In this paper, a new kind of intermittent control is proposed to study consensus problems of multi-agent systems with second-order dynamics. In particular, we consider the case that the information transmission occurs at sampling instants and the velocity information is not available for feedback. The proposed control only regulates the velocity of agents in a given sequence of disconnected time intervals, called activated intervals, after sampling instants. Remarkably, both the sampling and activated intervals are not required to be identical. By adopting algebraic graph theory and nonnegative matrix, some sufficient conditions are obtained for guaranteeing the consensus of the multi-agent systems under the switching topology. Finally, the numerical examples are included to illustrate the theoretical results.



Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 453 ◽  
Author(s):  
Guoying Miao ◽  
Gang Li ◽  
Tao Li ◽  
Yunping Liu

The paper investigates H ∞ consensus problem of heterogeneous multi-agent systems including agents with first- and second-order integrators in the presence of disturbance and communication time delays under Markov switching topologies. Based on current messages, outdated information stored in memory and communication time delay information from neighbors, a more general kind of distributed consensus algorithm is proposed, which is faster consensus convergence. By applying stochastic stability analysis, model transformation techniques and graph theory, sufficient conditions of mean square consensus and H ∞ consensus are obtained, respectively. Finally, simulation examples are given to illustrate the effectiveness of obtained theoretical results.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kaien Liu ◽  
Zhijian Ji ◽  
Shitao Han

In this paper, the bipartite consensus problem of heterogeneous multiagent systems composed of first-order and second-order agents is considered by utilizing the event-triggered control scheme. Under structurally balanced directed topology, event-triggered bipartite consensus protocol is put forward, and event-triggering functions consisting of measurement error and threshold are designed. To exclude Zeno behavior, an exponential function is introduced in the threshold. The bipartite consensus problem is transformed into the corresponding stability problem by means of gauge transformation and model transformation. By virtue of Lyapunov method, sufficient conditions for systems without input delay are obtained to guarantee bipartite consensus. Furthermore, for the case with input delay, sufficient conditions which include an admissible upper bound of the delay are obtained to guarantee bipartite consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.



Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3122
Author(s):  
Shurong Yan ◽  
Ayman A. Aly ◽  
Bassem F. Felemban ◽  
Meysam Gheisarnejad ◽  
Manwen Tian ◽  
...  

This study presents a new approach for multi-agent systems (MASs). The agent dynamics are approximated by the suggested type-3 (T3) fuzzy logic system (FLS). Some sufficient conditions based on the event-triggered scheme are presented to ensure the stability under less activation of the actuators. New tuning rules are obtained for T3-FLSs form the stability and robustness examination. The effect of perturbations, actuator failures and approximation errors are compensated by the designed adaptive compensators. Simulation results show that the output of all agents well converged to the leader agent under disturbances and faulty conditions. Additionally, it is shown that the suggested event-triggered scheme is effective and the actuators are updated about 20–40% of total sample times.



Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1808 ◽  
Author(s):  
Guang-Hui Xu ◽  
Meng Xu ◽  
Ming-Feng Ge ◽  
Teng-Fei Ding ◽  
Feng Qi ◽  
...  

Compared with the traditional multi-agent models, the hierarchical leader–follower network (HLFN) can describe some real-world multi-agent systems more precisely due to its layered properties. The distributed event-based consensus control problem of HLFNs with layer-to-layer delays, namely, communication delays among agents of different layers, is presented in this essay. In order to solve the aforementioned problem, several innovative hierarchical event-based control (HEC) algorithms are proposed. The sufficient conditions on the control parameters and event-triggered mechanism were derived to undertake the reliability of the closed-loop dynamics. Moreover, it is shown that the zeno-behaviors of the presented HEC algorithms can be excluded. Finally, there are some numerical examples that verify the availability of the results.



Sign in / Sign up

Export Citation Format

Share Document