scholarly journals Weak well-posedness of multidimensional stable driven SDEs in the critical case

2020 ◽  
Vol 20 (06) ◽  
pp. 2040004
Author(s):  
Paul-Éric Chaudru de Raynal ◽  
Stéphane Menozzi ◽  
Enrico Priola

We establish weak well-posedness for critical symmetric stable driven SDEs in [Formula: see text] with additive noise [Formula: see text], [Formula: see text]. Namely, we study the case where the stable index of the driving process [Formula: see text] is [Formula: see text] which exactly corresponds to the order of the drift term having the coefficient [Formula: see text] which is continuous and bounded. In particular, we cover the cylindrical case when [Formula: see text] and [Formula: see text] are independent one-dimensional Cauchy processes. Our approach relies on [Formula: see text]-estimates for stable operators and uses perturbative arguments.

Author(s):  
Zhiyuan Li ◽  
Feng-Fei Jin

This paper is concerned with the boundary error feedback regulation for a one-dimensional anti-stable wave equation with distributed disturbance generated by a finite-dimensional exogenous system. Transport equation and regulator equation are introduced first to deal with the anti-damping on boundary and the distributed disturbance of the original system. Then, the tracking error and its derivative are measured to design an observer for both exosystem and auxiliary partial differential equation (PDE) system to recover the state. After proving the well-posedness of the regulator equations, we propose an observer-based controller to regulate the tracking error to zero exponentially and keep the states of all the internal loop uniformly bounded. Finally, some numerical simulations are presented to validate the effectiveness of the proposed controller.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Zhengyong Ouyang ◽  
Xiangdong Wang ◽  
Haiwu Rong

We study the periodic boundary value problem for the weakly dissipativeμ-Hunter-Saxton equation. We establish the local well-posedness in Besov spaceB2,13/2, which extends the previous regularity range to the critical case.


Author(s):  
Angelo Favini ◽  
Ciprian G. Gal ◽  
Gisèle Ruiz Goldstein ◽  
Jerome A. Goldstein ◽  
Silvia Romanelli

We study the problem of the well-posedness for the abstract Cauchy problem associated to the non-autonomous one-dimensional wave equation utt = A(t)u with general Wentzell boundary conditions Here A(t)u := (a(x, t)ux)x, a(x, t) ≥ ε > 0 in [0, 1] × [0, + ∞) and βj(t) > 0, γj(t) ≥ 0, (γ0(t), γ1(t)) ≠ (0,0). Under suitable regularity conditions on a, βj, γj we prove the well-posedness in a suitable (energy) Hilbert space


2020 ◽  
Vol 34 ◽  
pp. 03011
Author(s):  
Constantin Niţă ◽  
Laurenţiu Emanuel Temereancă

In this article we prove that the heat equation with a memory term on the one-dimensional torus has a unique solution and we study the smoothness properties of this solution. These properties are related with some smoothness assumptions imposed to the initial data of the problem and to the source term.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kiyeon Lee

<p style='text-indent:20px;'>In this paper, we consider the Cauchy problem of <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula>-dimension Hartree type Dirac equation with nonlinearity <inline-formula><tex-math id="M2">\begin{document}$ c|x|^{-\gamma} * \langle \psi, \beta \psi\rangle $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ c\in \mathbb R\setminus\{0\} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 0 &lt; \gamma &lt; d $\end{document}</tex-math></inline-formula>(<inline-formula><tex-math id="M5">\begin{document}$ d = 2,3 $\end{document}</tex-math></inline-formula>). Our aim is to show the local well-posedness in <inline-formula><tex-math id="M6">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M7">\begin{document}$ s &gt; \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula> with mass-supercritical cases(<inline-formula><tex-math id="M8">\begin{document}$ 1 &lt; \gamma&lt;d $\end{document}</tex-math></inline-formula>) and mass-critical case(<inline-formula><tex-math id="M9">\begin{document}$ {\gamma} = 1 $\end{document}</tex-math></inline-formula>) via bilinear estimates and angular decomposition for which we use the null structure of nonlinear term effectively. We also provide the flow of Dirac equations cannot be <inline-formula><tex-math id="M10">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula> at the origin for <inline-formula><tex-math id="M11">\begin{document}$ H^s $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M12">\begin{document}$ s &lt; \frac{\gamma-1}2 $\end{document}</tex-math></inline-formula>.</p>


2009 ◽  
Vol 2 (2) ◽  
pp. 187-209 ◽  
Author(s):  
Igor Rodnianski ◽  
Yanir Rubinstein ◽  
Gigliola Staffilani

Sign in / Sign up

Export Citation Format

Share Document