scholarly journals NUMERICAL ALGORITHMS FOR DUAL BASES OF POSITIVE-DIMENSIONAL IDEALS

2013 ◽  
Vol 12 (06) ◽  
pp. 1350018 ◽  
Author(s):  
ROBERT KRONE

An ideal of a local polynomial ring can be described by calculating a standard basis with respect to a local monomial ordering. However the usual standard basis algorithms are not numerically stable. A numerically stable approach to describing the ideal is by finding the space of dual functionals that annihilate it, which reduces the problem to one of linear algebra. There are several known algorithms for finding the truncated dual up to any specified degree, which is useful for describing zero-dimensional ideals. We present a stopping criterion for positive-dimensional cases based on homogenization that guarantees all generators of the initial monomial ideal are found. This has applications for calculating Hilbert functions.

2019 ◽  
Vol 19 (10) ◽  
pp. 2050201
Author(s):  
Ibrahim Al-Ayyoub

Let [Formula: see text] be a monomial ideal in a polynomial ring with two indeterminates over a field. Assume [Formula: see text] is contained in the integral closure of some ideal that is generated by two elements from the generating set of [Formula: see text]. We produce sharp upper bounds for each of the reduction number and the Ratliff–Rush reduction number of the ideal [Formula: see text]. Under certain hypotheses, we give the exact values of these reduction numbers, and we provide an explicit method for obtaining these sharp upper bounds.


2017 ◽  
Vol 120 (1) ◽  
pp. 59 ◽  
Author(s):  
N. Altafi ◽  
N. Nemati ◽  
S. A. Seyed Fakhari ◽  
S. Yassemi

Let $S = \mathbb{K}[x_1, \dots, x_n]$ be the polynomial ring over a field $\mathbb{K}$. In this paper we present a criterion for componentwise linearity of powers of monomial ideals. In particular, we prove that if a square-free monomial ideal $I$ contains no variable and some power of $I$ is componentwise linear, then $I$ satisfies the gcd condition. For a square-free monomial ideal $I$ which contains no variable, we show that $S/I$ is a Golod ring provided that for some integer $s\geq 1$, the ideal $I^s$ has linear quotients with respect to a monomial order.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-28
Author(s):  
Goran Flegar ◽  
Hartwig Anzt ◽  
Terry Cojean ◽  
Enrique S. Quintana-Ortí

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.


2015 ◽  
Vol 58 (2) ◽  
pp. 393-401
Author(s):  
Zhongming Tang

AbstractLet S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a monomial ideal of S. According to one standard primary decomposition of I, we get a Stanley decomposition of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate the Stanley depth of S/I. It is proved that sdepthS(S/I) ≤ sizeS(I). When I is squarefree and bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).


Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


2011 ◽  
Vol 48 (2) ◽  
pp. 220-226
Author(s):  
Azeem Haider ◽  
Sardar Khan

Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/6783 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Mitchel T. Keller ◽  
Stephen J. Young

We develop combinatorial tools to study the relationship between the Stanley depth of a monomial ideal $I$ and the Stanley depth of its compliment, $S/I$. Using these results we are able to prove that if $S$ is a polynomial ring with at most 5 indeterminates and $I$ is a square-free monomial ideal, then the Stanley depth of $S/I$ is strictly larger than the Stanley depth of $I$. Using a computer search, we are able to extend this strict inequality up to polynomial rings with at most 7 indeterminates. This partially answers questions asked by Propescu and Qureshi as well as Herzog.


Author(s):  
Gidon Eshel

This chapter provides an overview of the second part of the book. This part is the crux of the matter: how to analyze actual data. While this part builds on Part 1, especially on linear algebra fundamentals covered in Part 1, the two are not redundant. The main distinguishing characteristic of Part 2 is its nuanced grayness. In the ideal world of algebra (and thus in most of part 1), things are black or white: two vectors are either mutually orthogonal or not, real numbers are either zero or not, a vector either solves a linear system or does not. By contrast, realistic data analysis, the province of Part 2, is always gray, always involves subjective decisions.


2019 ◽  
Vol 18 (03) ◽  
pp. 1950041 ◽  
Author(s):  
Anna Bigatti ◽  
Elisa Palezzato ◽  
Michele Torielli

In this paper, we recall the object sectional matrix which encodes the Hilbert functions of successive hyperplane sections of a homogeneous ideal. We translate and/or reprove recent results in this language. Moreover, some new results are shown about their maximal growth, in particular, a new generalization of Gotzmann’s Persistence Theorem, the presence of a GCD for a truncation of the ideal, and applications to saturated ideals.


Sign in / Sign up

Export Citation Format

Share Document