STUDY ON NANOMETRIC CUTTING MECHANISM AND BURR FORMATION USING MOLECULAR DYNAMICS SIMULATION

2006 ◽  
Vol 05 (04n05) ◽  
pp. 547-551 ◽  
Author(s):  
H. WU ◽  
F. Z. FANG ◽  
Q. X. PEI

Since no physical approach can be employed to study the mechanism in micro cutting, the molecular dynamics simulation is becoming more and more important. In this study, the results of molecular dynamics modeling and analysis on the nanometric machining on silicon surface are presented. According to the simulation, some phenomena in the nanometric cutting process are found. First, surface elastic rebound happens on the cut surface after cutter moving away. The value of the surface elastic rebound is calculated in the simulation. Second, the atoms near the corner of work piece swirl up following the cutter moving direction at the initial stage of removing atoms from the work piece. Third, the simulation results show that no matter how small material removal is, the burr is always formed at the edge of work piece.

2020 ◽  
Vol 7 ◽  
Author(s):  
Alex Bunker ◽  
Tomasz Róg

In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 117
Author(s):  
Qingsong Tu ◽  
Wice Ibrahimi ◽  
Steven Ren ◽  
James Wu ◽  
Shaofan Li

In this work, we systematically study a rotational nanofluidic device for reverse osmosis (RO) desalination by using large scale molecular dynamics modeling and simulation. Moreover, we have compared Molecular Dynamics simulation with fluid mechanics modeling. We have found that the pressure generated by the centrifugal motion of nanofluids can counterbalance the osmosis pressure developed from the concentration gradient, and hence provide a driving force to filtrate fresh water from salt water. Molecular Dynamics modeling of two different types of designs are performed and compared. Results indicate that this novel nanofluidic device is not only able to alleviate the fouling problem significantly, but it is also capable of maintaining high membrane permeability and energy efficiency. The angular velocity of the nanofluids within the device is investigated, and the critical angular velocity needed for the fluids to overcome the osmotic pressure is derived. Meanwhile, a maximal angular velocity value is also identified to avoid Taylor-Couette instability. The MD simulation results agree well with continuum modeling results obtained from fluid hydrodynamics theory, which provides a theoretical foundation for scaling up the proposed rotational osmosis device. Successful fabrication of such rotational RO membrane centrifuge may potentially revolutionize the membrane desalination technology by providing a fundamental solution to the water resource problem.


Author(s):  
R Komanduri ◽  
L M Raff

Molecular dynamics (MD) simulation, like other simulation techniques, such as the finite difference method (FDM), or the finite element method (FEM) can play a significant role in addressing a number of machining problems at the atomic scale. It may be noted that atomic simulations are providing new data and exciting insights into various manufacturing processes and tribological phenomenon that cannot be obtained readily in any other way—theory, or experiment. In this paper, the principles of MD simulation, relative advantages and current limitations, and its application to a range of machining problems are reviewed. Machining problems addressed include: (a) the mechanics of nanometric cutting of non-ferrous materials, such as copper and aluminium; (b) the mechanics of nanometric cutting of semiconductor materials, such as silicon and germanium; (c) the effect of various process parameters, including rake angle, edge radius and depth of cut on cutting and thrust forces, specific force ratio, energy, and subsurface deformation of the machined surface; the objective is the development of a process that is more efficient and effective in minimizing the surface or subsurface damage; (d) modelling of the exit failures in various work materials which cause burr formation in machining; (e) simulation of work materials with known defect structure, such as voids, grain boundaries, second phase particles; shape, size and density of these defects can be varied using MD simulation as well as statistical mechanical or Monte Carlo approaches; (f) nanometric cutting of nanostructures; (g) investigation of the nanometric cutting of work materials of known crystallographic orientation; (h) relative hardness of the tool material with respect to the work material in cutting; a range of hardness values from the tool being softer than the work material to the tool being several times harder than the work material is considered; and (i) the tool wear in nanometric cutting of iron with a diamond tool. The nature of deformation in the work material ahead of the tool, subsurface deformation, nature of variation of the forces and their ratio, and specific energy with cutting conditions are investigated by this method.


2016 ◽  
Vol 1136 ◽  
pp. 156-161 ◽  
Author(s):  
Jun Shimizu ◽  
Keito Uezaki ◽  
Li Bo Zhou ◽  
Takeyuki Yamamoto ◽  
Teppei Onuki ◽  
...  

This study aims to develop a cutting method, which enables to generate a localized hydrostatic pressure field in the vicinity of cutting zone in order to improve the machined surface integrity without causing unnecessary plastic deformation. In the previous work, a molecular dynamics simulation was performed using a newly developed cutting tool equipped with a planer jig with a rectangular hole for the cutting chip elimination, and it was confirmed that the developed cutting tool has advantages in giving a relatively high-hydrostatic stress field in the vicinity of the cutting zone and in suppressing the burr formation. In this report, further molecular dynamics simulation was performed in order to clarify the influence of jig shape on the cutting phenomena and machined surface integrity. As a result, it is found that a cutting tool of which front and side except for the rectangular hole are covered by the planer jig is the most advantageous for supplying high hydrostatic pressure and suppressing burr formation.


2010 ◽  
Vol 14 (4) ◽  
pp. 423-439 ◽  
Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Xiaoping Yang

2012 ◽  
Vol 9 (9) ◽  
pp. 1303-1308 ◽  
Author(s):  
Jiaxuan Chen ◽  
Yingchun Liang ◽  
Mingjun Chen ◽  
Liquan Wang

Sign in / Sign up

Export Citation Format

Share Document