A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index

2019 ◽  
Vol 18 (06) ◽  
pp. 1967-1987
Author(s):  
Tai-Liang Chen ◽  
Ching-Hsue Cheng ◽  
Jing-Wei Liu

Stock forecasting technology is always a popular research topic because accurate forecasts allow profitable investments and social change. We postulate, based on past research, three major drawbacks for using time series in forecasting stock prices as follows: (1) a simple time-series model provides insufficient explanations for inner and external interactions of the stock market; (2) the variables of a time series behave in strict stationarity, but economic time-series are usually in a nonlinear or nonstationary state and (3) the forecasting factors of multivariable time-series are selected based on researcher’s knowledge, and such a method is a “subjective” way to construct a forecasting model. Therefore, this paper proposes a causal time-series model to select forecasting factors and builds a machine learning forecast model. The “Granger causality test” is utilized first in the proposed model to select the critical factors from technical indicators and market indexes; next, a “multilayer perceptron regression (MLPR)” is employed to construct a forecasting model. This paper collected financial data over a 13-year period (from 2003 to 2015) of the Taiwan stock index (TAIEX) as experimental datasets. Furthermore, the root mean square error (RMSE) was used as a performance indicator, and we use five forecasting models as comparison models. The results reveal that the proposed model outperforms the comparison models in forecasting accuracy and performs well for three key indicators. LAG1, S&P500 and DJIA, are critical factors in all 11 of our time sliding windows (T1–T11). We offer these results to investors to aid in their decision-making processes.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


2011 ◽  
Vol 211-212 ◽  
pp. 1119-1123 ◽  
Author(s):  
Ching Hsue Cheng ◽  
Jing Wei Liu ◽  
Tzu Hsuan Lin

Fuzzy time series have in recent years drawn many scholars' attention due to their ability can handle the time series data with incomplete, imprecise and ambiguous pattern. However, most traditional time series models employed only single variable (stock index) in forecasting, yet ignored some factors that would also affect the stock volatility. Therefore, this paper proposes a novel forecasting model using multi-factor fuzzy time series model to forecast TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock index). Multi-factor fuzzy time series model is composed of three main components: stock index, trading volume and interactions between two stock markets. In order to evaluate the performance of the proposed model, the transaction records of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock index) and NASDAQ(National Association of Securities Dealers Automated Quotations) from 2000/01/04 to 2003/12/31 are used as experimental dataset and the root mean square error (RMSE) as evaluation criterion. The results show that the proposed model outperforms the listing models in accuracy for forecasting Taiwan stock market.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 36 ◽  
Author(s):  
Sarah Nadirah Mohd Johari ◽  
Fairuz Husna Muhamad Farid ◽  
Nur Afifah Enara Binti Nasrudin ◽  
Nur Sarah Liyana Bistamam ◽  
Nur Syamira Syamimi Muhammad Shuhaili

Predicting financial market changes is an important issue in time series analysis, receiving an increasing attention due to financial crisis. Autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting but ARIMA model cannot capture nonlinear patterns easily. Generalized autoregressive conditional heteroscedasticity (GARCH) model applied understanding of volatility depending to the estimation of previous forecast error and current volatility, improving ARIMA model. Support vector machine (SVM) and artificial neural network (ANN) have been successfully applied in solving nonlinear regression estimation problems. This study proposes hybrid methodology that exploits unique strength of GARCH + SVM model, and GARCH + ANN model in forecasting stock index. Real data sets of stock prices FTSE Bursa Malaysia KLCI were used to examine the forecasting accuracy of the proposed model. The results shows that the proposed hybrid model achieves best forecasting compared to other model.  


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yanpeng Zhang ◽  
Hua Qu ◽  
Weipeng Wang ◽  
Jihong Zhao

Time series forecasting models based on a linear relationship model show great performance. However, these models cannot handle the the data that are incomplete, imprecise, and ambiguous as the interval-based fuzzy time series models since the process of fuzzification is abandoned. This article proposes a novel fuzzy time series forecasting model based on multiple linear regression and time series clustering for forecasting market prices. The proposed model employs a preprocessing to transform the set of fuzzy high-order time series into a set of high-order time series, with synthetic minority oversampling technique. After that, a high-order time series clustering algorithm based on the multiple linear regression model is proposed to cluster dataset of fuzzy time series and to build the linear regression model for each cluster. Then, we make forecasting by calculating the weighted sum of linear regression models’ results. Also, a learning algorithm is proposed to train the whole model, which applies artificial neural network to learn the weights of linear models. The interval-based fuzzification ensures the capability to deal with the uncertainties, and linear model and artificial neural network enable the proposed model to learn both of linear and nonlinear characteristics. The experiment results show that the proposed model improves the average forecasting accuracy rate and is more suitable for dealing with these uncertainties.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 281
Author(s):  
Nazirah Ramli ◽  
Siti Musleha Ab Mutalib ◽  
Daud Mohamad

This paper proposes an enhanced fuzzy time series (FTS) prediction model that can keep some information under a various level of confidence throughout the forecasting procedure. The forecasting accuracy is developed based on the similarity between the fuzzified historical data and the fuzzy forecast values. No defuzzification process involves in the proposed method. The frequency density method is used to partition the interval, and the area and height type of similarity measure is utilized to get the forecasting accuracy. The proposed model is applied in a numerical example of the unemployment rate in Malaysia. The results show that on average 96.9% of the forecast values are similar to the historical data. The forecasting error based on the distance of the similarity measure is 0.031. The forecasting accuracy can be obtained directly from the forecast values of trapezoidal fuzzy numbers form without experiencing the defuzzification procedure.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 954
Author(s):  
Aiwu Zhao ◽  
Junhong Gao ◽  
Hongjun Guan

The fluctuation of the stock market has a symmetrical characteristic. To improve the performance of self-forecasting, it is crucial to summarize and accurately express internal fluctuation rules from the historical time series dataset. However, due to the influence of external interference factors, these internal rules are difficult to express by traditional mathematical models. In this paper, a novel forecasting model is proposed based on probabilistic linguistic logical relationships generated from historical time series dataset. The proposed model introduces linguistic variables with positive and negative symmetrical judgements to represent the direction of stock market fluctuation. Meanwhile, daily fluctuation trends of a stock market are represented by a probabilistic linguistic term set, which consist of daily status and its recent historical statuses. First, historical time series of a stock market is transformed into a fluctuation time series (FTS) by the first-order difference transformation. Then, a fuzzy linguistic variable is employed to represent each value in the fluctuation time series, according to predefined intervals. Next, left hand sides of fuzzy logical relationships between currents and their corresponding histories can be expressed by probabilistic linguistic term sets and similar ones can be grouped to generate probabilistic linguistic logical relationships. Lastly, based on the probabilistic linguistic term set expression of the current status and the corresponding historical statuses, distance measurement is employed to find the most proper probabilistic linguistic logical relationship for future forecasting. For the convenience of comparing the prediction performance of the model from the perspective of accuracy, this paper takes the closing price dataset of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) as an example. Compared with the prediction results of previous studies, the proposed model has the advantages of stable prediction performance, simple model design, and an easy to understand platform. In order to test the performance of the model for other datasets, we use the prediction of the Shanghai Stock Exchange Composite Index (SHSECI) to prove its universality.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ya’nan Wang ◽  
Yingjie Lei ◽  
Xiaoshi Fan ◽  
Yi Wang

Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1474 ◽  
Author(s):  
Ming-Chi Tsai ◽  
Ching-Hsue Cheng ◽  
Meei-Ing Tsai

Fuzzy time series (FTS) models have gotten much scholarly attention for handling sequential data with incomplete and ambiguous patterns. Many conventional time series methods employ a single variable in forecasting without considering other variables that can impact stock volatility. Hence, this paper modified the multi-period adaptive expectation model to propose a novel multifactor FTS fitting model for forecasting the stock index. Furthermore, after a literature review, we selected three important factors (stock index, trading volume, and the daily difference of two stock market indexes) to build a multifactor FTS fitting model. To evaluate the performance of the proposed model, the three datasets were collected from the Nasdaq Stock Market (NASDAQ), Taiwan Stock Exchange Index (TAIEX), and Hang Seng Index (HSI), and the RMSE (root mean square error) was employed to evaluate the performance of the proposed model. The results show that the proposed model is better than the listing models, and these research findings could provide suggestions to the investors as references.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Helin Jia

In this paper, a new FEPA portfolio forecasting model is based on the EMD decomposition method. The model is based on the special empirical modal decomposition of financial time series, principal component analysis, and artificial neural network to model and forecast for nonlinear, nonstationary, multiscale complex financial time series to predict stock market indices and foreign exchange rates and empirically investigate this hot area in financial market research. The combined forecasting model proposed in this paper is based on the idea of decomposition-reconstruction synthesis, which effectively improves the model’s prediction of internal financial time series. In this paper, we select the CSI 300 Index and foreign exchange rate as the empirical market and data and establish seven forecasting models to make predictions about the short-term running trend of the closing price. The interval EMD decomposition algorithm is introduced in this paper, considering both high and low prices to be contained in the input and output. By analyzing the closing price, high and low prices of the stock index at the same time, the volatility of this interval time series of the index and its trend can be better captured.


Author(s):  
Jingpei Dan ◽  
Fangyan Dong ◽  
Kaoru Hirota

A fuzzy local trend transform based fuzzy time series forecasting model is proposed to improve practicability and forecast accuracy by providing forecast of local trend variation based on the linguistic representation of ratios between any two consecutive points in original time series. Local trend variation satisfies a wide range of real applications for the forecast, the practicability is thereby improved. Specific values based on the forecasted local trend variations that reflect fluctuations in historical data are calculated accordingly to enhance the forecast accuracy. Compared with conventional models, the proposed model is validated by about 50% and 60% average improvement in terms of MLTE (mean local trend error) and RMSE (root mean squared error), respectively, for three typical forecasting applications. The MLTE results indicate that the proposed model outperforms conventional models significantly in reflecting fluctuations in historical data, and the improved RMSE results confirm an inherent enhancement of reflection of fluctuations in historical data and hence a better forecast accuracy. The potential applications of the proposed fuzzy local trend transform include time series clustering, classification, and indexing.


Sign in / Sign up

Export Citation Format

Share Document