PRESSURE INDUCED STRUCTURAL PHASE TRANSITION AND SUPERCONDUCTIVITY IN TITANIUM METAL

2009 ◽  
Vol 08 (01) ◽  
pp. 85-99
Author(s):  
A. AMAL RAJ

The electronic band structure, density of states, structural phase transition, and superconducting transition temperature under normal and high pressures are reported for titanium ( Ti ). The normal pressure band structure and density of states of hcp- Ti agree well with the previous calculations. The high pressure band structure exhibits significant deviations from the normal pressure band structure due to s, p → d transition. On the basis of band structure and total energy results obtained using full potential linear muffin-tin orbital method (FP LMTO), we predict a phase transformation sequence of α (hcp) → ω (hexagonal) → γ (distorted hcp) → β (bcc) in titanium under pressure. From our analysis we predict a δ (distorted bcc) phase which is not stable at any high pressures. According to the present calculation, at normal pressure, the superconducting transition of hcp- Ti occurs at 0.36 K which is in agreement with the experimental observation of 0.4 K. When the pressure is increased, it is predicted that, Tc increases at a rate of 3.123 K/Mbar in hcp- Ti . On further increase of pressure Tc begins to decrease at a rate of 1.464 K/Mbar.

2009 ◽  
Vol 23 (05) ◽  
pp. 723-741 ◽  
Author(s):  
K. IYAKUTTI ◽  
C. NIRMALA LOUIS ◽  
S. ANURATHA ◽  
S. MAHALAKSHMI

The electronic band structure, density of states, structural phase transition, superconducting transition and Fermi surface cross section of titanium ( Ti ) under normal and high pressures are reported. The high pressure band structure exhibits significant deviations from the normal pressure band structure due to s → d transition. On the basis of band structure and total energy results obtained using tight-binding linear muffin-tin orbital method (TB LMTO), we predict a phase transformation sequence of α( hcp ) → ω (hexagonal) → γ (distorted hcp) → β (bcc) in titanium under pressure. From our analysis, we predict a δ (distorted bcc) phase which is not stable at any high pressures. At ambient pressure, the superconducting transition occurs at 0.354 K. When the pressure is increased, it is predicted that, Tc increases at a rate of 3.123 K/Mbar in hcp–Ti . On further increase of pressure, Tc begins to decrease at a rate of 1.464 K/Mbar. The highest value of Tc(P) estimated is 5.043 K for hcp–Ti , 4.538 K for ω– Ti and 4.85 K for bcc – Ti . From this, it is inferred that the maximum value of Tc(P) is rather insensitive to the crystal structure of Ti . The nonlinearities in Tc(P) is explained by considering the destruction and creation of new parts of Fermi surface at high pressure. At normal pressure, the hardness of Ti is in the following order: ω- Ti > hcp - Ti > bcc- Ti > γ- Ti .


2012 ◽  
Vol 11 (01) ◽  
pp. 19-33 ◽  
Author(s):  
A. AMAL RAJ ◽  
C. NIRMALA LOUIS ◽  
V. REJILA ◽  
K. IYAKUTTI

The electronic band structure, structural phase transition, metallization and superconducting transition of cubic zinc blende type indium phosphide (InP) and indium nitride (InN), under pressure, are studied using FP-LMTO method. These indium compounds become metals and superconductors under high pressure but before that they undergo structural phase transition from ZnS to NaCl structure. The ground state properties and band gap values are compared with the experimental and previous theoretical results. From our analysis, it is found that the metallization pressure increases with increase of lattice constant. The superconducting transition temperatures (Tc) of InP and InN are obtained as a function of pressure for both the ZnS and NaCl structures and these compounds are identified as pressure induced superconductors. When pressure is increased Tc increases in both the normal ( ZnS ) and high pressure ( NaCl ) structures. The dependence of Tc on electron–phonon mass enhancement factor λ shows that InP and InN are electron–phonon mediated superconductors. The non-occurrence of metallization, phase transition and onset of superconductivity simultaneously in InP and InN is confirmed.


2007 ◽  
Vol 06 (04) ◽  
pp. 833-843 ◽  
Author(s):  
A. AMALRAJ ◽  
C. NIRMALA LOUIS ◽  
SR. GERARDIN JAYAM

The electronic band structure, metallization, structural phase transition, and superconductivity of cubic zinc blende type GaAs and InAs are investigated. The equilibrium lattice constant, bulk modulus, and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) get enhanced after metallization, which leads to the superconductivity in GaAs and InAs . The superconducting transition temperatures (T c ) of GaAs and InAs are obtained as a function of pressure for both the ZnS and NaCl structures. GaAs and InAs come under the class of pressure-induced superconductors. When pressure is increased T c increases in both the normal and high pressure-structures. The dependence of T c on electron–phonon mass enhancement factor λ shows that GaAs and InAs are electron–phonon-mediated superconductors. Also, it is found that GaAs and InAs retained in their normal structure under high pressure give appreciably high T c .


2017 ◽  
Vol 95 (8) ◽  
pp. 691-698
Author(s):  
Y. Mogulkoc ◽  
Y.O. Ciftci ◽  
G. Surucu

Using the first-principles calculations based on density functional theory (DFT), the structural, elastic, electronic, and vibrational properties of LiAl have been explored within the generalized gradient approximation (GGA) using the Vienna ab initio simulation package (VASP). The results demonstrate that LiAl compound is stable in the NaTl-type structure (B32) at ambient pressure, which is in good agreement with the experimental results and there is a structural phase transition from NaTl-type structure (B32) to CsCl-type structure (B2) at around 22.2 GPa pressure value. The pressure effects on the elastic properties have been discussed and the elastic property calculation indicates that the elastic instability could provide a phase transition driving force according to the variations relation of the elastic constant versus pressure. To gain further information about this, we also have investigated the other elastic parameters (i.e., Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and isotropic shear modulus). The electronic band structure, total and partial density of states, phonon dispersion curves, and one-phonon density of states of B2 and B32 phases are also presented with results.


2011 ◽  
Vol 25 (04) ◽  
pp. 573-587
Author(s):  
K. IYAKUTTI ◽  
V. REJILA ◽  
M. RAJARAJESWARI ◽  
C. NIRMALA LOUIS ◽  
S. MAHALAKSHMI

The electronic band structure, structural phase transition, metallization and superconducting transition of cubic zinc blende-type indium phosphide ( InP ) and indium nitride ( InN ), under pressure, are studied using TB-LMTO method. These indium compounds become metals and superconductors under high pressure but before that they undergo structural phase transition from ZnS to NaCl structure. The ground-state properties and band gap values are compared with the experimental and previous theoretical results. From our analysis, it is found that the metallization pressure increases with increase of lattice constant. The superconducting transition temperatures (Tc) of InP and InN are obtained as a function of pressure for both the ZnS and NaCl structures and these compounds are identified as pressure-induced superconductors. When pressure is increased Tc increases in both the normal ( ZnS ) and high pressure ( NaCl ) structures. The dependence of Tc on electron–phonon mass enhancement factor λ shows that InP and InN are electron–phonon mediated superconductors. The non-occurrence of metallization, phase transition and onset of superconductivity simultaneously in InP and InN are confirmed.


Author(s):  
P.Penila Saminy ◽  
Y. Ramola ◽  
C.Nirmala Louis

The metallization and the phase transition of the alkali bromide sodium bromide (NaBr) is investigated through its band structure. The equilibrium lattice constant, bulk modulus, pressure derivative of bulk modulus and the phase transition pressure at which the compound undergo structural phase transition from NaCl (B1) to the CsCl (B2) structure is predicted from the total energy calculations. The ground state properties and band gap values are compared with the experimental and other theoretical results. At normal pressure NaBr is a direct band gap insulator. When the pressure is increased there is enhanced overlapping between the wave functions of the neighboring atoms. As a result the widths of the valence and empty conduction bands increase. These changes lead to the narrowing and indirect closing of band gap in NaBr (metallization). It is also confirmed that the metallization and structural phase transition do not occur simultaneously in ionic compounds.


2014 ◽  
Vol 75 (12) ◽  
pp. 1295-1300 ◽  
Author(s):  
Long-Qing Chen ◽  
Jun Zhu ◽  
Yan-Jun Hao ◽  
Lin Zhang ◽  
Gang Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document