FIRST-PRINCIPLES STUDY OF OXYGEN-VACANCY Cu2O (111) SURFACE

2012 ◽  
Vol 11 (06) ◽  
pp. 1261-1280 ◽  
Author(s):  
HUANWEN WU ◽  
NING ZHANG ◽  
HONGMING WANG ◽  
SANGUO HONG

Geometric and electronic properties and vacancy formation energies for two kinds of oxygen-vacancy Cu 2 O (111) surfaces have been investigated by first-principles calculations. Results show that the relaxation happens mainly on the top three trilayers of surfaces. Two vacancies trap electrons of -0.11e and -0.27e, respectively. The effects of oxygen vacancies on the electronic structures are found rather localized. The electronic structures suggest that the oxygen vacancies enhance the electron donating ability of the surfaces to some extent. The energies of 1.75 and 1.43 eV for the formation of oxygen vacancies are rather low, which indicates the partially reduced surfaces are stable and easy to produce.

2016 ◽  
Vol 18 (28) ◽  
pp. 18978-18984 ◽  
Author(s):  
Shih-Yang Lin ◽  
Shen-Lin Chang ◽  
Hsin-Hsien Chen ◽  
Shu-Hsuan Su ◽  
Jung-Chun Huang ◽  
...  

The geometric and electronic properties of Bi-adsorbed monolayer graphene, enriched by the strong effect of a substrate, are investigated by first-principles calculations.


2021 ◽  
Vol 23 (36) ◽  
pp. 20444-20452
Author(s):  
Lihong Zhang ◽  
Shunqing Wu ◽  
Jianwei Shuai ◽  
Zhufeng Hou ◽  
Zizhong Zhu

The oxygen vacancy (left panel) and the vacancy formation energy as a function of temperature and pressure (right panel).


2005 ◽  
Vol 475-479 ◽  
pp. 3111-3114
Author(s):  
Masataka Mizuno ◽  
Hideki Araki ◽  
Yasuharu Shirai

Some of intermetallic compounds exist in a wide range of concentration around the stoichiometric composition. First-principles electronic structure calculations have been performed for constitutional defects in non-stoichiometric CoAl and CoTi in order to investigate their stabilities and structural relaxations induced by constitutional defects. For the evaluation of stabilities of constitutional defects, the compositional dependence curves both of formation energies and of lattice parameters are obtained by the calculations employing supercells in various sizes. The lattice relaxations around constitutional defects are discussed by analyzing the change in electronic structures induced by constitutional defects.


2005 ◽  
Vol 475-479 ◽  
pp. 3095-3098
Author(s):  
Katsuyuki Matsunaga ◽  
Teruyasu Mizoguchi ◽  
Atsutomo Nakamura ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

First-principles pseudopotential calculations were performed to investigate atomic and electronic structures of titanium (Ti) dopants in alumina (Al2O3). It was found that a substitutional Ti3+ defect induced an extra level occupied by one electron within the band gap of Al2O3. When two or more substitutional Ti3+ defects were located closely to each other, the defect-induced levels exhibited strong bonding interactions, and their formation energies decreased with increasing numbers of Ti3+ defects. This indicates that association and clustering of substitutional Ti3+ defects in Al2O3 can take place due to the interaction of the defect-induced levels.


2016 ◽  
Vol 4 (23) ◽  
pp. 5214-5221 ◽  
Author(s):  
Lixin Ning ◽  
Xiaowen Ji ◽  
Yuanyuan Dong ◽  
Wei Jin ◽  
Yucheng Huang ◽  
...  

Effects of Si–N incorporation on electronic structures and optical properties of YAG:Ce were investigated by first-principles calculations.


RSC Advances ◽  
2020 ◽  
Vol 10 (60) ◽  
pp. 36295-36302
Author(s):  
Zhinan Cao ◽  
Na Jin ◽  
Jinwen Ye ◽  
Xu Du ◽  
Ying Liu

First-principles calculations are carried out by DFT within the CASTEP plane wave code to investigate the mechanical properties and electronic structure of N and Al doped TiC.


Nanoscale ◽  
2014 ◽  
Vol 6 (9) ◽  
pp. 4566-4571 ◽  
Author(s):  
Ning Lu ◽  
Hongyan Guo ◽  
Lu Wang ◽  
Xiaojun Wu ◽  
Xiao Cheng Zeng

We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers.


Sign in / Sign up

Export Citation Format

Share Document