Theoretical investigation and molecular docking approach on the antioxidant activity of Schiff bases and their tautomers

2017 ◽  
Vol 16 (01) ◽  
pp. 1750001 ◽  
Author(s):  
Ahmed Taki Eddine Ardjani ◽  
Sidi Mohamed Mekelleche

A theoretical study of the antioxidant behavior of N[Formula: see text]-(2-hydroxy-3-methoxy-benzylidene)-4-tert-buty-lenzohydrazide (1), N[Formula: see text]-(5-bromo-2-hydroxy-benzylidene)-4-tert-butyl benzohydrazide (2) and N[Formula: see text]-(2-hydroxy-3-methoxybenzylidene)-4-methyl-benzene-sulfonohydrazide (3) and their tautomers 1 [Formula: see text] –3 [Formula: see text] have been carried out at B3LYP/6-31[Formula: see text]G(2d,2p). The numerical values of descriptors, namely, bond dissociation enthalpy, proton affinity (PA), electron transfer enthalpy (ETE), ionization potential, and proton dissociation enthalpy (PDE) have been calculated in gas phase and media solution (EtOH, DMSO and water). The obtained results show that the hydrogen atom transfer (HAT) mechanism is more favored thermodynamically in gas phase, whereas the sequential proton loss electron transfer (SPLET) mechanism is more preferred in solvents. Moreover, the couple (3,3[Formula: see text]) is found to be the most potent antioxidant as expected experimentally. Furthermore, the BDE values of compound 3 [Formula: see text] is much lower than that of ascorbic acid (AA), indicating that the tautomerization of compounds 1–3 has great influence on the antioxidant activity of these compounds. The antioxidant power of compounds (3.3[Formula: see text]) was also rationalized by the calculation of the atomic spin density. In addition, the molecular docking study of compounds 1–3 and 1[Formula: see text] –3[Formula: see text] on xanthine oxidase (XO) as the protein target revealed important interactions between active compounds and amino acids. Moreover, compound 3 is predicted to be a potential inhibitor with higher activity.

Author(s):  
Žiko Milanović ◽  
Marko Antonijević ◽  
Jelena Đorović ◽  
Dejan Milenković

The antioxidant activity of bergaptol (4-hydroxyfuro[3,2-g]chromen-7-one, BER) and xanthotoxol (9-hydroxyfuro[3,2-g]chromen-7-one, XAN) was investigated in water and benzene, as solvents. For this purpose, the density functional theory (DFT) was used. The free radical scavenging potency of investigated compounds towards different reactive oxygen species (ROS) was performed. Antioxidative mechanism of investigated compounds – hydrogen atom transfer (HAT), single-electron transfer–proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were examined using M06-2X/6-311++G(d,p) theoretical model. The important thermodynamic parameters (BDE, IP, PDE, PA, ETE) and Gibbs free energies of reactions, were used to determine the most probable antioxidant mechanism of action. The obtained thermodynamic parameters suggested that Hydrogen Atom Transfer (HAT) is the most probable reaction pathway in benzene, while Sequential Proton Loss Electron Transfer (SPLET) was favorized in water. The obtained results indicate that the favorable mechanism of antiradical activity depends on the polarity of medium and the nature of free radical species. By comparing the antioxidant activity of investigated compounds, it can be concluded that bergaptol exhibits better antioxidant properties. Molecular docking study of neutral and anionic species of investigated compounds was performed according to Estrogen receptor alpha (ERα). In both cases, bergaptol showed better inhibitory potency. All the anionic species showed a higher inhibition constant, indicating lower inhibition potency than corresponding parent molecules.


2018 ◽  
Vol 96 (5) ◽  
pp. 453-458
Author(s):  
Anes El-Hadj Saïd ◽  
Sidi Mohamed Mekelleche ◽  
Taki-Eddine Ahmed Ardjani

The objective of this work is to perform a theoretical analysis of the antioxidant properties of a series of 8-hydroxyquinolines (8-HQs) to rationalize the available experimental results and to design new potent 8-HQ derivatives. The study was carried out in gas phase and in methanol at the DFT/B3LYP/ 6-311++G(d,p) computational level. The formation of stable ArO• radicals is discussed on the basis of different mechanisms, namely, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and single proton loss electron transfer (SPLET). The obtained results show that the HAT mechanism is, thermodynamically, more favoured in gas phase, whereas the SPLET pathway is more favoured in polar solvents. The calculated thermochemical descriptors allow classification of the antioxidant power of the studied compounds.


2021 ◽  
Author(s):  
Sumayya Pottachola ◽  
Arifa Kaniyantavida ◽  
Muraleedharan Karuvanthodiyil

A theoretical evaluation of the antioxidant activity of natural pigment delphinidin (1a) and derivatives 1b, 1c, 1d & 1e was performed using the DFT-B3LYP/6–311 + G (d, p) level of theory. Three potential working mechanisms, hydrogen atom transfer (HAT), stepwise electron transfer proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), have been investigated. The physiochemical parameters, including O–H bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE), have been calculated in the gas phase and aqueous phase. The study found that the most suitable mechanism for explaining antioxidant activity is HAT in the gas phase and SPLET in the aqueous medium in this level of theory. Spin density calculation and delocalization index of studied molecules also support the radical scavenging activity. When incorporated into natural pigment delphinidin, the gallate moiety can enhance the activity and stability of the compounds.


2018 ◽  
Vol 149 (5) ◽  
pp. 921-929 ◽  
Author(s):  
Marta Kucerova-Chlupacova ◽  
Martin Dosedel ◽  
Jiri Kunes ◽  
Marta Soltesova-Prnova ◽  
Magdalena Majekova ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4145
Author(s):  
Amr Farouk ◽  
Mohamed Mohsen ◽  
Hatem Ali ◽  
Hamdy Shaaban ◽  
Najla Albaridi

A comparative study of volatile constituents, antioxidant activity, and molecular docking was conducted between essential oils from Mentha longifolia L., Mentha spicata L., and Origanum majorana L., widely cultivated in Madinah. The investigation of volatile oils extracted by hydrodistillation was performed using Gas Chromatography-Mass Spectrometry (GC-MS). A total number of 29, 42, and 29 components were identified in M. longifolia, M. spicata, and O. majorana representing, respectively, 95.91, 94.62, and 98.42, of the total oils. Pulegone (38.42%), 1,8-cineole (15.60%), menthone (13.20%), and isopulegone (9.81%) were the dominant compounds in M. longifolia oil; carvone (35.14%), limonene (27.11%), germacrene D (4.73%), and β-caryophyllene (3.02%) were dominant in M. spicata oil; terpin-4-ol (42.47%), trans-sabinene hydrate (8.52%), γ-terpinene (7.90%), α-terpineol (7.38%), linalool (6.35%), α-terpinene (5.42%), and cis-sabinene hydrate (3.14%) were dominant in O. majorana oil. The antioxidant activity, assessed using DPPH free radical–scavenging and ABTS assays, was found to be the highest in O. majorana volatile oil, followed by M. spicata and M. longifolia, which is consistent with the differences in total phenolic content and volatile constituents identified in investigated oils. In the same context, molecular docking of the main identified volatiles on NADPH oxidase showed a higher binding affinity for cis-verbenyl acetate, followed by β-elemene and linalool, compared to the control (dextromethorphan). These results prove significant antioxidant abilities of the investigated oils, which may be considered for further analyses concerning the control of oxidative stress, as well as for their use as possible antioxidant agents in the pharmaceutical industry.


2019 ◽  
Vol 15 ◽  
Author(s):  
Nenad Joksimović ◽  
Jelena Petronijević ◽  
Nenad Janković ◽  
Marijana Kosanić ◽  
Dušan Milivojević ◽  
...  

Background: In order to make some progress in discovering the more effective way to eliminate ROS which cause the oxidative stress in organism in humans and bearing in mind the fact that ethyl-2-hydroxy-4-aryl(alkyl)-4-oxo-2-butenoates (β-diketonates) belong to a class of biologically active compounds, series of β-diketonates were synthesized, characterized, and tested to evaluate there antioxidant activity. Further, to investigate how coordination to copper(II) ion affects the activity of β-diketonates, appropriate complexes were synthesized and characterized. Methods: All complexes were characterized by UV-Vis, IR, and EPR spectroscopy, MS spectrometry, and elemental analysis. Fluorescence spectroscopic method was used for investigations of the interactions between biomacromolecules (DNA or BSA) and compound 2E. Viscosity measurements and molecular docking study were performed to confirm the mode of interactions between DNA and BSA and compound 2E. Results: Scavenging activity on DPPH radical revealed that compounds 2A, 2B, and 2E possess largest free radical scavenging, comparable to standard while results of superoxide anion scavenging activities of tested samples showed that maximum scavenging activity (IC50=168.92 µg/mL) was found for 2E, very similar to standard ascorbic acid, followed by 2B and 2G. Results of the interactions between biomacromolecules and 2E indicated that 2E has the affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (3.7 ± 0.1) × 103 M-1], while Ka value obtained via titration of BSA with 2E [Ka = (4.2 ± 0.2) × 105 M-1], support the fact that the significant amount of the drug could be transported and distributed through the cells. Conclusions: All β-diketonates exhibited better scavenging activities than their corresponding copper complexes. Among all tested compounds, 2E gave the highest reducing power, even higher than standard ascorbic acid, while reducing power for compounds 2A and 2B was also good but lower than standard. DNA and BSA binding study for 2E showed that this compound has potential to be used as medicament.


Sign in / Sign up

Export Citation Format

Share Document