New molecular target insights about protein kinases of the Plasmodium falciparum. Using molecular docking and DFT-based reactivity descriptors

2017 ◽  
Vol 16 (08) ◽  
pp. 1750076 ◽  
Author(s):  
Alejandro Morales-Bayuelo

Currently, there is increasing interest in the potential of malaria inhibitors in Plasmodium falciparum activity. In this work, is propose a possible alternative to classifying 154 antimalarials, with P. falciparum activity. These antimalarials were synthesized by the Chibale’s group ( http://www.kellychibaleresearch.uct.ac.za/ ), with the goal of finding new insights on the binding pocket of the protein kinase PfPK5, PfPK7, PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 of the malaria parasite. However, there is only information about crystallography of PfPK5 and PfPK7. The protein kinases PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 were modeled using molecular homology. The validation used shows that our homology models can be an alternative for the protein kinases from P. falciparum, unknown today. The antimalarials were classified by taking into account the interactions in the hinge zone. These ligands bind to the kinase through the formation of one of two hydrogen bonds, with the backbone residues of the hinge region connecting the kinase N- and C-terminal loops. These interactions were supported by a reactivity chemistry analysis, using global chemical reactivity descriptors such as chemical potential, hardness, softness, electrophilicity, and the Fukui functions as local reactivity descriptors, within the Density Functional Theory (DFT) context.

2020 ◽  
Vol 18 (1) ◽  
pp. 857-873
Author(s):  
Kornelia Czaja ◽  
Jacek Kujawski ◽  
Radosław Kujawski ◽  
Marek K. Bernard

AbstractUsing the density functional theory (DFT) formalism, we have investigated the properties of some arylsulphonyl indazole derivatives that we studied previously for their biological activity and susceptibility to interactions of azoles. This study includes the following physicochemical properties of these derivatives: electronegativity and polarisability (Mulliken charges, adjusted charge partitioning, and iterative-adjusted charge partitioning approaches); free energy of solvation (solvation model based on density model and M062X functional); highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap together with the corresponding condensed Fukui functions, time-dependent DFT along with the UV spectra simulations using B3LYP, CAM-B3LYP, MPW1PW91, and WB97XD functionals, as well as linear response polarisable continuum model; and estimation of global chemical reactivity descriptors, particularly the chemical hardness factor. The charges on pyrrolic and pyridinic nitrogen (the latter one in the quinolone ring of compound 8, as well as condensed Fukui functions) reveal a significant role of these atoms in potential interactions of azole ligand–protein binding pocket. The lowest negative value of free energy of solvation can be attributed to carbazole 6, whereas pyrazole 7 has the least negative value of this energy. Moreover, the HOMO–LUMO gap and chemical hardness show that carbazole 6 and indole 5 exist as soft molecules, while fused pyrazole 7 has hard character.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4043 ◽  
Author(s):  
Temiloluwa T. Adejumo ◽  
Nikolaos V. Tzouras ◽  
Leandros P. Zorba ◽  
Dušanka Radanović ◽  
Andrej Pevec ◽  
...  

Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Five density functionals, CAM-B3LYP, LC-ωHPBE, MN12SX, N12SX, and ωB97XD, in connection with the Def2TZVP basis set were assessed together with the SMD solvation model for the calculation of the molecular properties, chemical reactivities, and solubilities of some pigments derived from astaxanthin, β-cryptoxanthin, fucoxanthin, myxol, siphonaxanthin, siphonein, and zeaxanthin marine carotenoids in the presence of different solvents (hexane, methanol, ethanol, and water). All the chemical reactivity descriptors for the systems were calculated via conceptual density functional theory (CDFT). Finally, the potential bioavailability and druggability as well as the bioactivity scores for the marine carotenoid pigments were predicted through different methodologies already reported in the literature, which have been previously validated during the study of other natural products obtained from marine sources.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Alejandro Morales-Bayuelo ◽  
Ricardo Vivas-Reyes

We present a topological analysis to the inductive effect through steric and electrostatic scales of quantitative convergence. Using the molecular similarity field based in the local guantum similarity (LQS) with the Topo-Geometrical Superposition Algorithm (TGSA) alignment method and the chemical reactivity in the density function theory (DFT) context, all calculations were carried out with Amsterdam Density Functional (ADF) code, using the gradient generalized approximation (GGA) and local exchange correlations PW91, in order to characterize the electronic effect by atomic size in the halogens group using a standard Slater-type-orbital basis set. In addition, in this study we introduced news molecular bonding relationships in the inductive effect and the nature of the polar character in the C–H bond taking into account the global and local reactivity descriptors such as chemical potential, hardness, electrophilicity, and Fukui functions, respectively. These descriptors are used to find new alternative considerations on the inductive effect, unlike to the binding energy and dipole moment performed in the traditional organic chemical.


2021 ◽  
Vol 24 (2) ◽  
pp. 1-8
Author(s):  
Amar Tuma Musa ◽  
◽  
Khalida Abaid ◽  

The theoretical study represents an essential preliminary stage for the start of any industry, as it gives a theoretical description of the properties of compounds (chemical, physical and biological properties)without conducting research to find out about this and the least cost. Through the theoretical study, we extract a clear picture of the chemical compounds before starting to manufacture them to know the extent of their impact on human health and their chemical and biological effectiveness. Using the Density Functional Theory (DFT/B3LYP) with base 6-311G,throughGaussian 09 program, the optimize geometry,(bond lengths, angles bond)and vibrational spectra was calculated of the benzimidazole derivatives [Carbenzim (CZM), Mebendazole (MBZ)].Through orbital charts of HOMO and LUMO to study electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity and determination of global reactivity descriptors (Hardness (),Softness (S), Electrophilicity(), Chemical potential(),Electronegativity(χ))] that defines compunds effectiveness and the their biological activities. In addition, (QSAR) data has been used to develop relationships between biological activities and thermophysical properties of chemicals, through the Hyper Chem8.0programbyusingSemi-empirical(SE)method at the (PM3) level. The LOG P value was calculated, binding energy, Polarizability, hydration energy, surface area, and electrostatic potential energy difference of two level.


2021 ◽  
Author(s):  
Mohammad J Abunuwar ◽  
Adnan A Dahadha

Abstract In this study eight selected of the most potent cyclin dependent kinase 2 inhibitors in which targeting adenosine triphosphate -pocket site theoretically investigated to support literature information of frontier molecular orbitals, molecular electrostatic maps, and global chemical reactivity descriptors such as chemical hardness, chemical softness, chemical potential, electronegativity and electrophilicity of cyclin dependent kinase 2 inhibitors. Calculation and three-dimensional plotting were achieved through Gaussian 09W and Gausview 6 software’s utilizing density functional theory quantum modeling applying both hybrids extended and not extended basis set. Crystal structure of CDK2 with inhibitors was obtained from protein data bank and visualized through PyMol Schrödinger software to assign polar and non-polar interactions of inhibitors with enzyme. A promising conclusion trend obtained in this research regarding to molecules that could have an inhibition activity toward the cyclin dependent kinase 2 enzymes. Our theoretical investigation emphasizes that, the anti-cancer activity has directly relationship with value of chemical hardness and chemical softness, where the most potent compounds was the pyrazolopyrimidine and imidazole pyrimidine and they have higher chemical hardness value and at the same time lower value of chemical softness compared with the rest of compounds.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550026 ◽  
Author(s):  
Davood Farmanzadeh ◽  
Hamid Rezainejad

In this study, by the density functional theory (DFT) method-based reactivity descriptors, the electronic properties and chemical reactivity of Fe substituted nanocage, FeB35+nN36-n(n = 0, 1), were investigated in gaseous and aqueous phases. The calculated binding energies of Fe atoms revealed that the substituting Fe atom in some locations of nanocage make the system more stable. The calculated global descriptors showed that the substituted Fe remarkably increases the chemical reactivity of B36N36. Also, local descriptors showed that the high reactivity of substituted nanocages is mainly related to Fe atom and these chemical species are more talented for nucleophilic attacks. The results of this work may be useful to investigate the effects of substituted metals in chemical reactivity of BN nanostructures.


2019 ◽  
Vol 17 (1) ◽  
pp. 1133-1139 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

AbstractThe chemical structures and molecular reactivities of the Amatoxin group of fungi-derived peptides have been determined by means of the consideration of a model chemistry that has been previously validated as well-behaved for our purposes. The reactivity descriptors were calculated on the basis of a methodological framework built around the concepts that are the outcome of the so called Conceptual Density Functional Theory (CDFT). This procedure in connection with the different Fukui functions allowed to identify the chemically active regions within the molecules. By considering a simple protocol designed by our research group for the estimation of the pKa of peptides through the information coming from the chemical hardness, these property has been established for the different molecular systems explored in this research. The information reported through this work could be of interest for medicinal chemistry researchers in using this knowledge for the design of new medicines based on the studied peptides or as a help for the understanding of the toxicity mechanisms exerted by them.


Sign in / Sign up

Export Citation Format

Share Document