An Extended Simulated Annealing Based on the Memory Structure to Solve Redundancy Allocation Problem

2019 ◽  
Vol 18 (04) ◽  
pp. 527-548
Author(s):  
Arash Zaretalab ◽  
Vahid Hajipour

One of the most practical optimization problems in the reliability field is the redundancy allocation problem (RAP). This problem optimizes the reliability of a system by adding redundant components to subsystems under some constraints. In recent years, various meta-heuristic algorithms applied to find a local or global optimum solution for RAP in which redundancy strategies are chosen. Among these algorithms, simulated annealing algorithm (SA) is a capable one and makes use of a mathematical analogue to the physical annealing process to finding the global optimum. In this paper, we present a new simulated annealing algorithm named knowledge-based simulated annealing (KBSA) to solve RAP for the series-parallel system when the redundancy strategy can be chosen for individual subsystems. In the KBSA algorithm, the SA part searches the solution space to find good solutions and knowledge model saves the knowledge of good solution and feed it back to the algorithm. In this paper, this approach achieves the optimal result for some instances in the literature. In order to evaluate the performance of the proposed algorithm, it is compared with well-known algorithms in the literature for different test problems. Finally, the results illustrate that the proposed algorithm has a good proficiency in obtaining desired results.

1999 ◽  
Vol 10 (06) ◽  
pp. 1065-1070 ◽  
Author(s):  
SHU-YOU LI ◽  
ZHI-HUI DU ◽  
MENG-YUE WU ◽  
JING ZHU ◽  
SAN-LI LI

A high-performance general program is presented to deal with the multi-parameter optimization problems in physics. Considering the requirements of physical application, some small but significant modifications were made on the conventional simulated annealing algorithm. A parallel realization was suggested to further improve the performance of the program. Mathematical and physical examples were taken to test the feasibility and the efficiency of the program. The source code is available from the authors free of charge.


2009 ◽  
Vol 3 (2) ◽  
pp. 87-100 ◽  
Author(s):  
Marcin Woch ◽  
Piotr Łebkowski

This article presents a new simulated annealing algorithm that provides very high quality solutions to the vehicle routing problem. The aim of described algorithm is to solve the vehicle routing problem with time windows. The tests were carried out with use of some well known instances of the problem defined by M. Solomon. The empirical evidence indicates that simulated annealing can be successfully applied to bi-criterion optimization problems.


2012 ◽  
Vol 7 (1) ◽  
pp. 7-15
Author(s):  
T. O. Weber ◽  
Wilhelmus A. M. V. Noije

This paper approaches the problem of analog circuit synthesis through the use of a Simulated Annealing algorithm with capability of performing crossovers with past anchor solutions (solutions better than all the others in one of the specifications) and modifying the weight of the Aggregate Objective Function specifications in order to escape local minimums. Search for the global optimum is followed by search for the Pareto front, which represents the trade-offs involved in the design and it is performed using the proposed algorithm together with Particle Swarm Optimization. In order to check the performance of the algorithm, the synthesis of a Miller Amplifier was accomplished in two different situations. The first was the comparison of 40 syntheses for Adaptive Simulated Annealing (ASA), Simulate Annealing/Quenching (SA/SQ) and the proposed SA/SQ algorithm with crossovers using a 20-minute bounded optimization with the aim of comparing the solutions of each method. Results were compared using Wilcoxon-Mann-Whitney test with a significance of 0.05 and showed that simulated annealing with crossovers have higher change of returning a good solution than the other algorithms used in this test. The second situation was the synthesis not bounded by time aiming to achieve the best circuit in order to test the use of crossovers in SA/SQ. The final amplifier using the proposed algorithm had 15.6 MHz of UGF, 82.6 dBV, 61º phase margin, 26 MV/s slew rate, area of 980 μm² and current supply of 297 μA in a 0.35 μm technology and was performed in 84 minutes.


2015 ◽  
Vol 15 (2) ◽  
pp. 6471-6479
Author(s):  
Francisca Rosario ◽  
Dr. K. Thangadurai

In the process of physical annealing, a solid is heated until all particles randomly arrange themselves forming the liquid state. A slow cooling process is then used to crystallize the liquid. This process is known as simulated annealing. Simulated annealing is stochastic computational technique that searches for global optimum solutions in optimization problems. The main goal here is to give the algorithm more time in the search space exploration by accepting moves, which may degrade the solution quality, with some probability depending on a parameter called temperature. In this discussion the simulated annealing algorithm is implemented in pest and weather data set for feature selection and it reduces the dimension of the attributes through specified iterations.


Author(s):  
Ken Ferens ◽  
Darcy Cook ◽  
Witold Kinsner

This paper proposes the application of chaos in large search space problems, and suggests that this represents the next evolutionary step in the development of adaptive and intelligent systems towards cognitive machines and systems. Three different versions of chaotic simulated annealing (XSA) were applied to combinatorial optimization problems in multiprocessor task allocation. Chaotic walks in the solution space were taken to search for the global optimum or “good enough” task-to-processor allocation solutions. Chaotic variables were generated to set the number of perturbations made in each iteration of a XSA algorithm. In addition, parameters of a chaotic variable generator were adjusted to create different chaotic distributions with which to search the solution space. The results show that the convergence rate of the XSA algorithm is faster than simulated annealing when the solutions are far apart in the solution space. In particular, the XSA algorithms found simulated annealing’s best result on average about 4 times faster than simulated annealing.


Author(s):  
Seifedine N. Kadry ◽  
Abdelkhalak El Hami

The present paper focus on the improvement of the efficiency of structural optimization, in typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for large scale global optimization problems with constraints is proposed. The authors have developed a stochastic algorithm called SAPSPSA that uses Simulated Annealing algorithm (SA). In addition, the Simultaneous Perturbation Stochastic Approximation method (SPSA) is used to refine the solution. Commonly, structural analysis problems are constrained. For the reason that SPSA method involves penalizing constraints a penalty method is used to design a new method, called Penalty SPSA (PSPSA) method. The combination of both methods (Simulated Annealing algorithm and Penalty Simultaneous Perturbation Stochastic Approximation algorithm) provides a powerful hybrid stochastic optimization method (SAPSPSA), the proposed method is applicable for any problem where the topology of the structure is not fixed. It is simple and capable of handling problems subject to any number of constraints which may not be necessarily linear. Numerical results demonstrate the applicability, accuracy and efficiency of the suggested method for structural optimization. It is found that the best results are obtained by SAPSPSA compared to the results provided by the commercial software ANSYS.


Sign in / Sign up

Export Citation Format

Share Document