ON LORENZ-LIKE DYNAMIC SYSTEMS WITH STRENGTHENED NONLINEARITY AND NEW PARAMETERS

Author(s):  
BO LIAO ◽  
YUAN YAN TANG ◽  
LU AN

This paper introduces two types of Lorenz-like three-dimensional quadratic autonomous chaotic systems with 7 and 8 new parameters free of choice, respectively. Both systems are investigated at the equilibriums to study their chaotic characteristics. We focus our attention on the second type of the introduced system which consists of three nonlinear quadratic equations. Predictably, coordinates of the equilibriums are prohibitively complex. Therefore, instead of directly analyzing their stability, we prove the asymptotical characterization of equilibriums by utilizing our preliminary results derived for the first type of system. Our result shows that, though the coordinates of equilibriums satisfy a ternary quadratic, the system still contains only three equilibriums in circumstances of chaos. Sufficient conditions for the chaotic appearance of systems are derived. Our results are further verified by numerical simulations and the maximum Lyapunov exponent for several examples. Our research takes a first step in investigating chaos in Lorenz-like dynamic systems with strengthened nonlinearity and general forms of parameters.

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 365
Author(s):  
Hongyan Zang ◽  
Jianying Liu ◽  
Jiu Li

In this paper, a class of n-dimensional discrete chaotic systems with modular operations is studied. Sufficient conditions for transforming this kind of discrete mapping into a chaotic mapping are given, and they are proven by the Marotto theorem. Furthermore, several special systems satisfying the criterion are given, the basic dynamic properties of the solution, such as the trace diagram and Lyapunov exponent spectrum, are analyzed, and the correctness of the chaos criterion is verified by numerical simulations.


1996 ◽  
Vol 06 (04) ◽  
pp. 759-767
Author(s):  
R. SINGH ◽  
P.S. MOHARIR ◽  
V.M. MARU

The notion of compounding a chaotic system was introduced earlier. It consisted of varying the parameters of the compoundee system in proportion to the variables of the compounder system, resulting in a compound system which has in general higher Lyapunov exponents. Here, the notion is extended to self-compounding of a system with a real-earth example, and mutual compounding of dynamic systems. In the former, the variables in a system perturb its parameters. In the latter, two systems affect the parameters of each other in proportion to their variables. Examples of systems in such compounding relationships are studied. The existence of self-compounding is indicated in the geodynamics of mantle convection. The effect of mutual compounding is studied in terms of Lyapunov exponent variations.


2013 ◽  
Vol 23 (01) ◽  
pp. 1350007 ◽  
Author(s):  
XINQUAN ZHAO ◽  
FENG JIANG ◽  
JUNHAO HU

In this paper, the existence of globally exponentially attractive sets and positive invariant sets of three-dimensional autonomous systems with only cross-product nonlinearities are considered. Sufficient conditions, which guarantee the existence of globally exponentially attractive set and positive invariant set of the system, are obtained. The results of this paper comprise some existing relative results as in special cases. The approach presented in this paper can be applied to study other chaotic systems.


2010 ◽  
Vol 24 (31) ◽  
pp. 6143-6155
Author(s):  
XING-YUAN WANG ◽  
JING ZHANG

In this paper, the linear and nonlinear generalized synchronization of chaotic systems is investigated. Based on the modified state observer method, a new synchronization approach is proposed with more extensive application scope. The proposed synchronization scheme can realize the linear and nonlinear generalized synchronizations of same dimensional or different dimensional chaotic systems. Sufficient conditions of global asymptotic generalized synchronization between the drive system and the response system are gained on the basis of the state observer theory. Numerical simulations further illustrate the effectiveness of the proposed scheme.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650031 ◽  
Author(s):  
Sajad Jafari ◽  
Viet-Thanh Pham ◽  
Tomasz Kapitaniak

Recently, many rare chaotic systems have been found including chaotic systems with no equilibria. However, it is surprising that such a system can exhibit multiscroll chaotic sea. In this paper, a novel no-equilibrium system with multiscroll hidden chaotic sea is introduced. Besides having multiscroll chaotic sea, this system has two more interesting properties. Firstly, it is conservative (which is a rare feature in three-dimensional chaotic flows) but not Hamiltonian. Secondly, it has a coexisting set of nested tori. There is a hidden torus which coexists with the chaotic sea. This new system is investigated through numerical simulations such as phase portraits, Lyapunov exponents, Poincaré map, and frequency spectra. Furthermore, the feasibility of such a system is verified through circuital implementation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Baoying Chen

The traditional Ši'lnikov theorems provide analytic criteria for proving the existence of chaos in high-dimensional autonomous systems. We have established one extended version of the Ši'lnikov homoclinic theorem and have given a set of sufficient conditions under which the system generates chaos in the sense of Smale horseshoes. In this paper, the extension questions of the Ši'lnikov homoclinic theorem and its applications are still discussed. We establish another extended version of the Ši'lnikov homoclinic theorem. In addition, we construct a new three-dimensional chaotic system which meets all the conditions in this extended Ši'lnikov homoclinic theorem. Finally, we list all well-known three-dimensional autonomous quadratic chaotic systems and classify them in the light of the Ši'lnikov theorems.


Nova Scientia ◽  
2017 ◽  
Vol 9 (19) ◽  
pp. 906-909
Author(s):  
K. Casas-García ◽  
L. A. Quezada-Téllez ◽  
S. Carrillo-Moreno ◽  
J. J. Flores-Godoy ◽  
Guillermo Fernández-Anaya

Since theorem 1 of (Elhadj and Sprott, 2012) is incorrect, some of the systems found in the article (Casas-García et al. 2016) may have homoclinic or heteroclinic orbits and may seem chaos in the Shilnikov sense. However, the fundamental contribution of our paper was to find ten simple, three-dimensional dynamic systems with non-linear quadratic terms that have an asymptotically stable equilibrium point and are chaotic, which was achieved. These were obtained using the Monte Carlo method applied specifically for the search of these systems.


Author(s):  
Junwei Sun ◽  
Suxia Jiang ◽  
Guangzhao Cui ◽  
Yanfeng Wang

Based on combination synchronization of three chaotic systems and combination–combination synchronization of four chaotic systems, a novel scheme of dual combination synchronization is investigated for six chaotic systems in the paper. Using combined adaptive control and Lyapunov stability theory of chaotic systems, some sufficient conditions are attained to realize dual combination synchronization of six chaotic systems. The corresponding theoretical proofs and numerical simulations are presented to demonstrate the effectiveness and correctness of the dual combination synchronization. Due to the complexity of dual combination synchronization, it will be more secure and interesting to transmit and receive signals in application of communication.


2020 ◽  
Vol 30 (12) ◽  
pp. 2050174 ◽  
Author(s):  
Li Ma ◽  
Xianggang Liu ◽  
Xiaotong Liu ◽  
Ying Zhang ◽  
Yu Qiu ◽  
...  

This paper is mainly devoted to the investigation of discrete-time fractional systems in three aspects. Firstly, the fractional Bogdanov map with memory effect in Riemann–Liouville sense is obtained. Then, via constructing suitable controllers, the fractional Bogdanov map is shown to undergo a transition from regular state to chaotic one. Meanwhile, the positive largest Lyapunov exponent is calculated by the Jacobian matrix algorithm to distinguish the chaotic areas. Finally, the Grassberger–Procaccia algorithm is employed to evaluate the correlation dimension of the controlled fractional Bogdanov system under different parameters. The main results show that the correlation dimension converges to a fixed value as the embedding dimension increases for the controlled fractional Bogdanov map in chaotic state, which also coincides with the conclusion driven by the largest Lyapunov exponent. Moreover, three-dimensional fractional Stefanski map is considered to further verify the effectiveness and generality of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document