GLOBALLY EXPONENTIALLY ATTRACTIVE SETS AND POSITIVE INVARIANT SETS OF THREE-DIMENSIONAL AUTONOMOUS SYSTEMS WITH ONLY CROSS-PRODUCT NONLINEARITIES

2013 ◽  
Vol 23 (01) ◽  
pp. 1350007 ◽  
Author(s):  
XINQUAN ZHAO ◽  
FENG JIANG ◽  
JUNHAO HU

In this paper, the existence of globally exponentially attractive sets and positive invariant sets of three-dimensional autonomous systems with only cross-product nonlinearities are considered. Sufficient conditions, which guarantee the existence of globally exponentially attractive set and positive invariant set of the system, are obtained. The results of this paper comprise some existing relative results as in special cases. The approach presented in this paper can be applied to study other chaotic systems.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Xinquan Zhao ◽  
Feng Jiang ◽  
Zhigang Zhang ◽  
Junhao Hu

This paper introduces a new series of three-dimensional chaotic systems with cross-product nonlinearities. Based on some conditions, we analyze the globally exponentially or globally conditional exponentially attractive set and positive invariant set of these chaotic systems. Moreover, we give some known examples to show our results, and the exponential estimation is explicitly derived. Finally, we construct some three-dimensional chaotic systems with cross-product nonlinearities and study the switching system between them.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Baoying Chen

The traditional Ši'lnikov theorems provide analytic criteria for proving the existence of chaos in high-dimensional autonomous systems. We have established one extended version of the Ši'lnikov homoclinic theorem and have given a set of sufficient conditions under which the system generates chaos in the sense of Smale horseshoes. In this paper, the extension questions of the Ši'lnikov homoclinic theorem and its applications are still discussed. We establish another extended version of the Ši'lnikov homoclinic theorem. In addition, we construct a new three-dimensional chaotic system which meets all the conditions in this extended Ši'lnikov homoclinic theorem. Finally, we list all well-known three-dimensional autonomous quadratic chaotic systems and classify them in the light of the Ši'lnikov theorems.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050026 ◽  
Author(s):  
Zahra Faghani ◽  
Fahimeh Nazarimehr ◽  
Sajad Jafari ◽  
Julien C. Sprott

In this paper, some new three-dimensional chaotic systems are proposed. The special property of these autonomous systems is their identical eigenvalues. The systems are designed based on the general form of quadratic jerk systems with 10 terms, and some systems with stable equilibria. Using a systematic computer search, 12 simple chaotic systems with identical eigenvalues were found. We believe that systems with identical eigenvalues are described here for the first time. These simple systems are listed in this paper, and their dynamical properties are investigated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
G. Kai ◽  
W. Zhang ◽  
Z. C. Wei ◽  
J. F. Wang ◽  
A. Akgul

This paper introduces a new four-dimensional hyperchaotic financial system on the basis of an established three-dimensional nonlinear financial system and a dynamic model by adding a controller term to consider the effect of control on the system. In terms of the proposed financial system, the sufficient conditions for nonexistence of chaotic and hyperchaotic behaviors are derived theoretically. Then, the solutions of equilibria are obtained. For each equilibrium, its stability and existence of Hopf bifurcation are validated. Based on corresponding first Lyapunov coefficient of each equilibrium, the analytical proof of the existence of periodic solutions is given. The ultimate bound and positively invariant set for the financial system are obtained and estimated. There exists a stable periodic solution obtained near the unstable equilibrium point. Finally, the dynamic behaviors of the new system are explored from theoretical analysis by using the bifurcation diagrams and phase portraits. Moreover, the hyperchaotic financial system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations and its real contribution to engineering.


2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Li Jian-Qiang ◽  
Zhu Zexuan ◽  
Ji Zhen ◽  
Pei Hai-Long

The concept and model of hybrid systems are introduced. Invariant sets introduced by LaSalle are proposed, and the concept is extended to invariant sets in hybrid systems which include disturbance. It is shown that the existence of invariant sets by arbitrary transition in hybrid systems is determined by the existence of common Lyapunov function in the systems. Based on the Lyapunov function, an efficient transition method is proposed to ensure the existence of invariant sets. An algorithm is concluded to compute the transition mode, and the invariant set can also be computed as a convex problem. The efficiency and correctness of the transition algorithm are demonstrated by an example of hybrid systems.


Author(s):  
Gerhard Oertel

The reader, even if familiar with vectors, will find it useful to work through this chapter because it introduces notation that will be used throughout this book. We will take vectors to be entities that possess magnitude, orientation, and sense in three-dimensional space. Graphically, we will represent them as arrows with the sense from tail to head, magnitude proportional to the length, and orientation indicated by the angles they form with a given set of reference directions. Two different kinds of symbol will be used to designate vectors algebraically, boldface letters (and the boldface number zero for a vector of zero magnitude), and subscripted letters to be introduced later. The first problems deal with simple vector geometry and its algebraic representation. Multiplying a vector by a scalar affects only its magnitude (length) without changing its direction. Problem 1. State the necessary and sufficient conditions for the three vectors A, B, and C to form a triangle. (Problems 1–9, 12–14, 19–23, and 25 from Sokolnikoff & Redheffer, 1958.) Problem 2. Given the sum S = A + B and the difference D = A – B, find A and B in terms of S and D (a) graphically and (b) algebraically. Problem 3. (a) State the unit vector a with the same direction as a nonzero vector A. (b) Let two nonzero vectors A and B issue from the same point, forming an angle between them; using the result of (a), find a vector that bisects this angle. Problem 4. Using vector methods, show that a line from one of the vertices of a parallelogram to the midpoint of one of the nonadjacent sides trisects one of the diagonals. Two vectors are said to form with each other two distinct products: a scalar, the dot product, and a vector, the cross product.


Author(s):  
BO LIAO ◽  
YUAN YAN TANG ◽  
LU AN

This paper introduces two types of Lorenz-like three-dimensional quadratic autonomous chaotic systems with 7 and 8 new parameters free of choice, respectively. Both systems are investigated at the equilibriums to study their chaotic characteristics. We focus our attention on the second type of the introduced system which consists of three nonlinear quadratic equations. Predictably, coordinates of the equilibriums are prohibitively complex. Therefore, instead of directly analyzing their stability, we prove the asymptotical characterization of equilibriums by utilizing our preliminary results derived for the first type of system. Our result shows that, though the coordinates of equilibriums satisfy a ternary quadratic, the system still contains only three equilibriums in circumstances of chaos. Sufficient conditions for the chaotic appearance of systems are derived. Our results are further verified by numerical simulations and the maximum Lyapunov exponent for several examples. Our research takes a first step in investigating chaos in Lorenz-like dynamic systems with strengthened nonlinearity and general forms of parameters.


2015 ◽  
Vol 36 (8) ◽  
pp. 2408-2418 ◽  
Author(s):  
CÉSAR CAMACHO ◽  
RUDY ROSAS

Consider a complex one-dimensional foliation on a complex surface near a singularity $p$. If ${\mathcal{I}}$ is a closed invariant set containing the singularity $p$, then ${\mathcal{I}}$ contains either a separatrix at $p$ or an invariant real three-dimensional manifold singular at $p$.


2006 ◽  
Vol 16 (11) ◽  
pp. 3383-3390 ◽  
Author(s):  
PEI YU ◽  
XIAOXIN LIAO

In this paper, we employ generalized Lyapunov functions to derive new estimations of the ultimate boundary for the trajectories of two types of Lorenz systems, one with parameters in finite intervals and the other in infinite intervals. The new estimations improve the results reported so far in the literature. In particular, for the singular cases: b → 1+ and a → 0+, we have obtained the estimations independent of a. Moreover, our method using elementary algebra greatly simplifies the proofs in the literature. This is an interesting attempt in obtaining information of the attractors which is difficult when merely based on differential equations. It indicates that Lyapunov function is still a powerful tool in the study of qualitative behavior of chaotic systems.


2012 ◽  
Vol 22 (01) ◽  
pp. 1250010 ◽  
Author(s):  
FU ZHANG ◽  
JACK HEIDEL

We show analytically that almost all three-dimensional dissipative quadratic systems of ordinary differential equations with a total of five terms on the right-hand side and one nonlinear term (namely 5-1 cases) are not chaotic except twenty one of them. Indeed we find nine systems that exhibit chaos, which were discovered by Sprott and Malasoma earlier. They are the simplest dissipative chaotic systems found so far. In this paper, we also extend Heidel–Zhang's theorem which provides sufficient conditions for solutions in the three-dimensional autonomous systems with polynomials and rational expressions on the right-hand side being nonchaotic. We then investigate the twenty one systems analytically and numerically. We show the portraits of some typical chaotic and nonchaotic solutions in phase space. For two of the systems that exhibit chaos we found stable period 1, 2, 4, 8 and 12 orbits numerically.


Sign in / Sign up

Export Citation Format

Share Document