scholarly journals Wavelet frames on Vilenkin groups and their approximation properties

Author(s):  
Yuri Farkov ◽  
Elena Lebedeva ◽  
Maria Skopina

An explicit description of all Walsh polynomials generating tight wavelet frames is given. An algorithm for finding the corresponding wavelet functions is suggested, and a general form for all wavelet frames generated by an appropriate Walsh polynomial is described. Approximation properties of tight wavelet frames are also studied. In contrast to the real setting, it appeared that a wavelet tight frame decomposition has an arbitrary large approximation order whenever all wavelet functions are compactly supported.

2014 ◽  
Vol 977 ◽  
pp. 532-535
Author(s):  
Qing Jiang Chen ◽  
Yu Zhou Chai ◽  
Chuan Li Cai

Information science focuses on understanding problems from the perspective of the stake holders involved and then applying information and other technologies as needed. A necessary and sufficient condition is identified in term of refinement masks for applying the unitary extension principle for periodic functions to construct tight wavelet frames. Then a theory on the approxi-mation order of truncated tight frame series is established, which facilitates construction of tight periodic wavelet frames with desirable approximation order. The pyramid decomposition scheme is derived based on the generalized multiresolution structure.


Author(s):  
MARTIN EHLER

In this paper, we present a construction of compactly supported multivariate pairs of dual wavelet frames. The approach is based on the convolution of two refinable distributions. We obtain smooth wavelets with any preassigned number of vanishing moments. Their underlying refinable function is fundamental. In the examples, we obtain symmetric wavelets with small support from optimal refinable functions, i.e. the refinable function has minimal mask size with respect to smoothness and approximation order of its generated multiresolution analysis. The wavelet system has maximal approximation order with respect to the underlying refinable function.


Author(s):  
S. ALBEVERIO ◽  
M. SKOPINA

The concept of p-adic quincunx Haar MRA was introduced and studied in Ref. 12. In contrast to the real setting, infinitely many different wavelet bases are generated by a p-adic MRA. We give an explicit description for all wavelet functions corresponding to the quincunx Haar MRA. Each one generates an orthogonal basis, one of them was presented in Ref. 12. A connection between quincunx Haar MRA and two-dimensional separable Haar MRA is also found.


Author(s):  
Baobin Li

The system of totally interpolating wavelet frames is discussed in this paper, in which both the scaling function and one of wavelet functions are interpolating. It will be shown that corresponding filter banks possess the special structure, and the parametrization of filter banks is present. Moreover, we show that when considering tight frame systems with two generators, the Ron–Shen's continuous-linear-spline-based tight frame is the only one with totally interpolating property and symmetry. But in the dual frame context, more good examples of bi-frames with symmetric/antisymmetric property can be obtained and constructed, which in particular, include frames with the uniform symmetry.


2020 ◽  
Vol 27 (3) ◽  
pp. 403-412
Author(s):  
Vishnu Narayan Mishra ◽  
Preeti Sharma ◽  
Marius Mihai Birou

AbstractIn the present paper, we discuss the approximation properties of Jain–Baskakov operators with parameter c. The paper deals with the modified forms of the Baskakov basis functions. Some direct results are established, which include the asymptotic formula, error estimation in terms of the modulus of continuity and weighted approximation. Also, we construct the King modification of these operators, which preserves the test functions {e_{0}} and {e_{1}}. It is shown that these King type operators provide a better approximation order than some Baskakov–Durrmeyer operators for continuous functions defined on some closed intervals.


Author(s):  
SHOUZHI YANG ◽  
YANMEI XUE

Two algorithms for constructing a class of compactly supported complex tight wavelet frames with conjugate symmetry are provided. Firstly, based on a given complex refinable function ϕ, an explicit formula for constructing complex tight wavelet frames is presented. If the given complex refinable function ϕ is compactly supported conjugate symmetric, then we prove that there exists a compactly supported conjugate symmetric/anti-symmetric complex tight wavelet frame Ψ = {ψ1, ψ2, ψ3} associated with ϕ. Secondly, under the conditions that both the low-pass filters and high-pass filters are unknown, we give a parametric formula for constructing a class of smooth conjugate symmetric/anti-symmetric complex tight wavelet frames. Free parameters in the algorithm are explicitly identified, and can be used to optimize the result with respect to other criteria. Finally, two examples are given to illustrate how to use our method to construct conjugate symmetric complex tight wavelet frames.


2016 ◽  
Vol 13 (Supp. 1) ◽  
pp. 1641001 ◽  
Author(s):  
Iakovos Androulidakis ◽  
Marco Zambon

We explain and motivate Stefan–Sussmann singular foliations, and by replacing the tangent bundle of a manifold with an arbitrary Lie algebroid, we introduce singular subalgebroids. Both notions are defined using compactly supported sections. The main results of this note are an equivalent characterization, in which the compact support condition is removed, and an explicit description of the sheaf associated to any Stefan–Sussmann singular foliation or singular subalgebroid.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. San Antolín ◽  
R. A. Zalik

For any dilation matrix with integer entries and , we construct a family of smooth compactly supported tight wavelet frames with three generators in . Our construction involves some compactly supported refinable functions, the oblique extension principle, and a slight generalization of a theorem of Lai and Stöckler. Estimates for the degrees of smoothness are given. With the exception of a polynomial whose coefficients must in general be computed by spectral factorization, the framelets are expressed in closed form in the frequency domain, in terms of elementary transcendental functions. By means of two examples we also show that for low degrees of smoothness the use of spectral factorization may be avoided.


Sign in / Sign up

Export Citation Format

Share Document