Extraction of drug–drug interaction using neural embedding

2018 ◽  
Vol 16 (06) ◽  
pp. 1840027 ◽  
Author(s):  
Wen Juan Hou ◽  
Bamfa Ceesay

Information on changes in a drug’s effect when taken in combination with a second drug, known as drug–drug interaction (DDI), is relevant in the pharmaceutical industry. DDIs can delay, decrease, or enhance absorption of either drug and thus decrease or increase their action or cause adverse effects. Information Extraction (IE) can be of great benefit in allowing identification and extraction of relevant information on DDIs. We here propose an approach for the extraction of DDI from text using neural word embedding to train a machine learning system. Results show that our system is competitive against other systems for the task of extracting DDIs, and that significant improvements can be achieved by learning from word features and using a deep-learning approach. Our study demonstrates that machine learning techniques such as neural networks and deep learning methods can efficiently aid in IE from text. Our proposed approach is well suited to play a significant role in future research.

Author(s):  
Kayalvizhi S. ◽  
Thenmozhi D.

Catch phrases are the important phrases that precisely explain the document. They represent the context of the whole document. They can also be used to retrieve relevant prior cases by the judges and lawyers for assuring justice in the domain of law. Currently, catch phrases are extracted using statistical methods, machine learning techniques, and deep learning techniques. The authors propose a sequence to sequence (Seq2Seq) deep neural network to extract catch phrases from legal documents. They have employed several layers, namely embedding layer, encoder-decoder layer, projection layer, and loss layer to build the deep neural network. The methodology is evaluated on IRLeD@FIRE-2017 dataset and the method has obtained 0.787 and 0.607 as mean average precision and recall scores respectively. Results show that the proposed method outperforms the existing systems.


2020 ◽  
Author(s):  
Gilberto De Oliveira ◽  
Milena Carmona ◽  
Julia Pistori ◽  
Patricia De Oliveira ◽  
Rodrigo Mateus ◽  
...  

Rumination may reveal important behavioral aspects of livestock animals and has been increasingly studied using new sensors technologies. In this work a new device was developed to collect close-up videos from the animal mouth during the rumination period. Using shallow and deep machine learning techniques, a software that classifies the basic mouth movements from these images has also been developed. A baseline performance for this equipment has been established using the Fscore metric. SVM achieved the highest F-score of 79.3% for the shallow learning approach. The best F-score using deep learning was 75% using VGG16.


Teknika ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62-67
Author(s):  
Faisal Dharma Adhinata ◽  
Diovianto Putra Rakhmadani

The impact of this pandemic affects various sectors in Indonesia, especially in the economic sector, due to the large-scale social restrictions policy to suppress this case's growth. The details of the growth of Covid-19 in Indonesia are still fluctuating and cannot be fully understood. Recently it has been developed by researchers related to the prediction of Covid-19 cases in various countries. One of them is using a machine learning technique approach to predict cases of daily increase Covid-19. However, the use of machine learning techniques results in the MSE error value in the thousands. This high number indicates that the prediction data using the model is still a high error rate compared to the actual data. In this study, we propose a deep learning approach using the Long Short Term Memory (LSTM) method to build a prediction model for the daily increase cases of Covid-19. This study's LSTM model architecture uses the LSTM layer, Dropout layer, Dense, and Linear Activation Function. Based on various hyperparameter experiments, using the number of neurons 10, batch size 32, and epochs 50, the MSE values were 0.0308, RMSE 0.1758, and MAE 0.13. These results prove that the deep learning approach produces a smaller error value than machine learning techniques, even closer to zero.


2021 ◽  
Vol 7 ◽  
pp. e533
Author(s):  
Recep Sinan Arslan

Background Technological developments have a significant effect on the development of smart devices. The use of smart devices has become widespread due to their extensive capabilities. The Android operating system is preferred in smart devices due to its open-source structure. This is the reason for its being the target of malware. The advancements in Android malware hiding and detection avoidance methods have overridden traditional malware detection methods. Methods In this study, a model employing AndroAnalyzer that uses static analysis and deep learning system is proposed. Tests were carried out with an original dataset consisting of 7,622 applications. Additional tests were conducted with machine learning techniques to compare it with the deep learning method using the obtained feature vector. Results Accuracy of 98.16% was achieved by presenting a better performance compared to traditional machine learning techniques. Values of recall, precision, and F-measure were 98.78, 99.24 and 98.90, respectively. The results showed that deep learning models using trace-based feature vectors outperform current cutting-edge technology approaches.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2012 ◽  
pp. 13-22 ◽  
Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Sign in / Sign up

Export Citation Format

Share Document