QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT

2006 ◽  
Vol 04 (05) ◽  
pp. 749-759 ◽  
Author(s):  
ZHENG-YAUN XUE ◽  
PING DONG ◽  
YOU-MIN YI ◽  
ZHUO-LIANG CAO

We investigate schemes to securely distribute and reconstruct single-qubit and two-qubit arbitrary quantum states between two parties via tripartite GHZ states in cavity QED without joint measurement. Our schemes offer a simple way of demonstrating quantum state sharing in cavity QED. We also consider the generalization of our schemes to distribute and reconstruct a quantum state among many parties.

2008 ◽  
Vol 17 (2) ◽  
pp. 624-627 ◽  
Author(s):  
Tao Ying-Juan ◽  
Tian Dong-Ping ◽  
Hu Ming-Liang ◽  
Qin Meng

2007 ◽  
Vol 18 (11) ◽  
pp. 1699-1706 ◽  
Author(s):  
LI DONG ◽  
XIAOMING XIU ◽  
YAJUN GAO

A scheme for quantum state sharing (QSTS) of a one-particle state is proposed for a three-particle GHZ state utilized as a quantum channel. After the sender (Alice) makes Bell-state measurements (BM) on her particles, and the controller (Charlie) performs a computational basis measurement (CM), the recipient (Bob) only needs to carry out a unitary transformation of the classical information from the sender and the controller. Finally, the scheme is generalized to multiparty QSTS of a one-qubit state with n agents and an m-qubit state with n agents.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 118
Author(s):  
Andrea López-Incera ◽  
Pavel Sekatski ◽  
Wolfgang Dür

We study the effect of local decoherence on arbitrary quantum states. Adapting techniques developed in quantum metrology, we show that the action of generic local noise processes --though arbitrarily small-- always yields a state whose Quantum Fisher Information (QFI) with respect to local observables is linear in system size N, independent of the initial state. This implies that all macroscopic quantum states, which are characterized by a QFI that is quadratic in N, are fragile under decoherence, and cannot be maintained if the system is not perfectly isolated. We also provide analytical bounds on the effective system size, and show that the effective system size scales as the inverse of the noise parameter p for small p for all the noise channels considered, making it increasingly difficult to generate macroscopic or even mesoscopic quantum states. In turn, we also show that the preparation of a macroscopic quantum state, with respect to a conserved quantity, requires a device whose QFI is already at least as large as the one of the desired state. Given that the preparation device itself is classical and not a perfectly isolated macroscopic quantum state, the preparation device needs to be quadratically bigger than the macroscopic target state.


2012 ◽  
Vol 55 (12) ◽  
pp. 2439-2444 ◽  
Author(s):  
YuGuang Yang ◽  
Juan Xia ◽  
Xin Jia ◽  
Hua Zhang

2014 ◽  
Vol 12 (03) ◽  
pp. 1450014 ◽  
Author(s):  
Ming-Ming Wang ◽  
Xiu-Bo Chen ◽  
Jin-Guang Chen ◽  
Yi-Xian Yang

In this paper, we propose a new version of quantum state sharing (QSTS) scheme of an arbitrary multi-qubit state. Then we extend the scheme to a general form of sharing an arbitrary multi-qudit state in the high-dimensional system. The schemes consider the most general case where an arbitrary quantum state can be shared among an arbitrary number of agents in a symmetric way that any agent can recover the state with the help of the others. Compared with a traditional QSTS scheme sharing an unknown state, our schemes are more efficient since the dealer only needs to perform a simpler measurement and consume less classical communication costs.


2012 ◽  
Vol 51 (12) ◽  
pp. 3757-3762 ◽  
Author(s):  
Yuan-hua Li ◽  
Xian-ping Wang ◽  
Ming-huang Sang ◽  
Yi-you Nie

2012 ◽  
Vol 10 (02) ◽  
pp. 1250003 ◽  
Author(s):  
OMAR JIMÉNEZ ◽  
CARLOS MUÑOZ ◽  
ANDREI B. KLIMOV ◽  
ALDO DELGADO

We propose a scheme for the deterministic sharing arbitrary qudit states among three distant parties and characterize the set of ideal quantum channels. We also show that the use of non-ideal quantum channels for quantum state sharing can be related to the problem of quantum state discrimination. This allows us to formulate a protocol which leads to perfect quantum state sharing with a finite success probability.


2009 ◽  
Vol 07 (04) ◽  
pp. 755-770 ◽  
Author(s):  
YINXIANG LONG ◽  
DAOWEN QIU ◽  
DONGYANG LONG

In the past decades, various schemes of teleportation of quantum states through different types of quantum channels (a prior shared entangled state between the sender and the receiver), e.g. EPR pairs, generalized Bell states, qubit GHZ states, standard W states and its variations, genuine multiqubit entanglement states, etc., have been developed. Recently, three-qutrit quantum states and two-qudit quantum states have also been considered as quantum channels for teleportation. In this paper, we investigate the teleportation of an unknown qudit using a d level GHZ state, i.e. a three-qudit maximally entangled state, as quantum channel. We design a general scheme of faithful teleportation of an unknown qudit using a d-level GHZ state shared between the sender and the receiver, or among the sender, the receiver and the controller; an unknown two-qudit of Schmidt form using a d level GHZ state shared between the sender and the receiver; as well as an unknown arbitrary two-qudit using two shared d level GHZ states between the sender, the receiver and the controller, or using one shared d level GHZ state and one shared generalized Bell state. We obtain the general formulas of Alice's measurement basis, Charlie's measurement basis and Bob's unitary operations to recover the input state of Alice. It is intuitionistic to generalize the protocols of teleporting an arbitrary two-qudit state to teleporting an arbitrary n-qudit state.


Sign in / Sign up

Export Citation Format

Share Document