scholarly journals ON BELL INEQUALITY VIOLATIONS WITH HIGH-DIMENSIONAL SYSTEMS

2011 ◽  
Vol 09 (07n08) ◽  
pp. 1807-1823 ◽  
Author(s):  
ADETUNMISE C. DADA ◽  
ERIKA ANDERSSON

Quantum correlations resulting in violations of Bell inequalities have generated a lot of interest in quantum information science and fundamental physics. In this paper, we address some questions that become relevant in Bell-type tests involving systems with local dimension greater than 2. For CHSH-Bell tests within 2D subspaces of such high-dimensional systems, it has been suggested that experimental violation of Tsirelson's bound indicates that more than 2D entanglement was present. We explain that the overstepping of Tsirelson's bound is due to violation of fair sampling, and can in general be reproduced by a separable state, if fair sampling is violated. For a class of Bell-type inequalities generalized to d-dimensional systems, we then consider what level of violation is required to guarantee d-dimensional entanglement of the tested state, when fair sampling is satisfied. We find that this can be used as an experimentally feasible test of d-dimensional entanglement for up to quite high values of d.

Author(s):  
Volkan Erol

Quantum Correlations are studied extensively in quantum information domain. Entanglement Measures and Quantum Discord are good examples of these actively studied correlations. Detection of violation in Bell inequalities is also a widely active area in quantum information theory world. In this work, we revisit the problem of analyzing the behavior of quantum correlations and violation of Bell inequalities in noisy channels. We extend the problem defined in [1] by observing the changes in negativity measure, quantum discord and a modified version of Horodecki measure for violation of Bell inequalities under amplitude damping, phase damping and depolarizing channels. We report different interesting results for each of these correlations and measures. All these correlations and measures decrease under decoherence channels, but some changes are very dramatical comparing to others. We investigate also separability conditions of example studied states.


2012 ◽  
Author(s):  
Paul M. Alsing ◽  
Michael L. Fanto

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin Wieśniak

AbstractQuantum correlations, in particular those, which enable to violate a Bell inequality, open a way to advantage in certain communication tasks. However, the main difficulty in harnessing quantumness is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ based mixtures and Dicke states. For the former, we consider quantum communication complexity reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that persistency can reach 0.482N, significantly more than reported in previous studies.


2020 ◽  
Author(s):  
Cherie R. Kagan ◽  
Lee C. Bassett ◽  
Christopher B. Murray ◽  
Sarah M. Thompson

2015 ◽  
Vol 17 (46) ◽  
pp. 30805-30816 ◽  
Author(s):  
Cathal Smyth ◽  
Daniel G. Oblinsky ◽  
Gregory D. Scholes

Delocalization of a model light-harvesting complex is investigated using multipartite measures inspired by quantum information science.


Author(s):  
Ben Toner

We describe a new technique for obtaining Tsirelson bounds, which are upper bounds on the quantum value of a Bell inequality. Since quantum correlations do not allow signalling, we obtain a Tsirelson bound by maximizing over all no-signalling probability distributions. This maximization can be cast as a linear programme. In a setting where three parties, A, B and C, share an entangled quantum state of arbitrary dimension, we (i) bound the trade-off between AB's and AC's violation of the Clauser–Horne–Shimony–Holt inequality and (ii) demonstrate that forcing B and C to be classically correlated prevents A and B from violating certain Bell inequalities, relevant for interactive proof systems and cryptography.


Sign in / Sign up

Export Citation Format

Share Document