Quantum speed-up dynamical crossover in open systems

2017 ◽  
Vol 15 (04) ◽  
pp. 1750027
Author(s):  
W.-J. Wu ◽  
K. Yan ◽  
Y.-Q. Xie ◽  
Yinzhong Wu ◽  
Xiang Hao

We put forward a measure for evaluating quantum speed limit for arbitrary mixed states of open systems by means of trace distance. Compared with some present measures, it can provide an optimal bound to the speed of the evolution. The dynamical crossover from no speedup region to speedup region happens during the spontaneous decay of an atom. The evolution is characteristic of the alternating behavior between quantum acceleration and deceleration in the strong coupling case. Under the condition of detuning, the evolution can be initially accelerated and then decelerated to a normal process either in the weak or strong coupling regime. In accordance with the uncertainty relation, we demonstrate that the potential capacity for quantum speedup evolution is closely related to the energy feedback from the reservoir to the system. The negative decay rate for the evolution results in the speedup process where the photons previously emitted by the atom are reabsorbed at a later time. The values of the spontaneous decay rate become positive after a long enough time, which results in the evolution with no speedup potential.

2014 ◽  
Vol 12 (07n08) ◽  
pp. 1560010 ◽  
Author(s):  
Vittorio Penna ◽  
Francesco A. Raffa

We present a perturbative analysis of a Rabi model where the coupling between the quantized single-mode electromagnetic field and the two-level atom depends on the field intensity. Upon modeling the matter–radiation coupling through the Holstein–Primakoff realization of algebra su(1,1), we evaluate first- and second-order eigenenergies and eigenstates both in the weak-coupling regime (atom transition frequency smaller than the coupling strength) and in the strong-coupling regime. In the first case, among various effects, we observe a quadratic dependence on the photon number of energy eigenvalues and the possible formation of level doublets. In the strong-coupling case, the perturbative analysis becomes considerably complex due to the su(1,1)-valued form of the unperturbed Hamiltonian. The critical condition for the transition to an almost continuous spectrum is found in terms of the model parameters.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

This chapter presents experimental studies performed on planar semiconductor microcavities in the strong-coupling regime. The first section reviews linear experiments performed in the 1990s that evidence the linear optical properties of cavity exciton-polaritons. The chapter is then focused on experimental and theoretical studies of resonantly excited microcavity emission. We mainly describe experimental configuations in which stimulated scattering was observed due to formation of a dynamical condensate of polaritons. Pump-probe and cw experiments are described in addition. Dressing of the polariton dispersion and bistability of the polariton system due to inter-condensate interactions are discussed. The semiclassical and the quantum theories of these effects are presented and their results analysed. The potential for realization of devices is also discussed.


1997 ◽  
Vol 22 (3) ◽  
pp. 371-374 ◽  
Author(s):  
J. Bloch ◽  
R. Planel ◽  
V. Thierry-Mieg ◽  
J.M. Gérard ◽  
D. Barrier ◽  
...  

1988 ◽  
Vol 03 (06) ◽  
pp. 1385-1412
Author(s):  
IAN G. ANGUS

We will attempt to understand the ΔI=1/2 pattern of the nonleptonic weak decays of the kaons. The calculation scheme employed is the Strong Coupling Expansion of lattice QCD. Kogut-Susskind fermions are used in the Hamiltonian formalism. We will describe in detail the methods used to expedite this calculation, all of which was done by computer algebra. The final result is very encouraging. Even though an exact interpretation is clouded by the presence of irrelevant operators, and questions of lattice artifacts, a signal of the ΔI=1/2 rule appears to be observable. With an appropriate choice of the one free parameter, enhancements greater than those observed experimentally can be obtained. We also point out a number of surprising results which we turn up in the course of the calculation.


Sign in / Sign up

Export Citation Format

Share Document