strong coupling expansion
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Etienne Granet ◽  
Fabian Essler

We consider the time evolution of local observables after an interaction quench in the repulsive Lieb-Liniger model. The system is initialized in the ground state for vanishing interaction and then time-evolved with the Lieb-Liniger Hamiltonian for large, finite interacting strength c. We employ the Quench Action approach to express the full time evolution of local observables in terms of sums over energy eigenstates and then derive the leading terms of a 1/c expansion for several one and two-point functions as a function of time t>0 after the quantum quench. We observe delicate cancellations of contributions to the spectral sums that depend on the details of the choice of representative state in the Quench Action approach and our final results are independent of this choice. Our results provide a highly non-trivial confirmation of the typicality assumptions underlying the Quench Action approach.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
M. Beccaria ◽  
G. V. Dunne ◽  
A. A. Tseytlin

Abstract As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $$ \mathcal{N} $$ N = 2 4d superconformal models we consider two special theories with gauge groups SU(N) and Sp(2N). They contain N-independent numbers of hypermultiplets in rank 2 antisymmetric and fundamental representations and are planar-equivalent to the corresponding $$ \mathcal{N} $$ N = 4 SYM theories. These $$ \mathcal{N} $$ N = 2 theories can be realised on a system of N D3-branes with a finite number of D7-branes and O7-plane; the dual string theories should be particular orientifolds of AdS5 × S5 superstring. Starting with the localization matrix model representation for the $$ \mathcal{N} $$ N = 2 partition function on S4 we find exact differential relations between the 1/N terms in the corresponding free energy F and the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop expectation value $$ \left\langle \mathcal{W}\right\rangle $$ W and also compute their large ’t Hooft coupling (λ » 1) expansions. The structure of these expansions is different from the previously studied models without fundamental hypermultiplets. In the more tractable Sp(2N) case we find an exact resummed expression for the leading strong coupling terms at each order in the 1/N expansion. We also determine the exponentially suppressed at large λ contributions to the non-planar corrections to F and $$ \left\langle \mathcal{W}\right\rangle $$ W and comment on their resurgence properties. We discuss dual string theory interpretation of these strong coupling expansions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luis F. Alday

Abstract We study non-planar correlators in $$ \mathcal{N} $$ N = 4 super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order 1/N4 and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on AdS5× S5 in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. V. Belitsky ◽  
G. P. Korchemsky

Abstract We develop a new technique for computing a class of four-point correlation functions of heavy half-BPS operators in planar $$ \mathcal{N} $$ N = 4 SYM theory which admit factorization into a product of two octagon form factors with an arbitrary bridge length. We show that the octagon can be expressed as the Fredholm determinant of the integrable Bessel operator and demonstrate that this representation is very efficient in finding the octagons both at weak and strong coupling. At weak coupling, in the limit when the four half-BPS operators become null separated in a sequential manner, the octagon obeys the Toda lattice equations and can be found in a closed form. At strong coupling, we exploit the strong Szegő limit theorem to derive the leading asymptotic behavior of the octagon and, then, apply the method of differential equations to determine the remaining subleading terms of the strong coupling expansion to any order in the inverse coupling. To achieve this goal, we generalize results available in the literature for the asymptotic behavior of the determinant of the Bessel operator. As a byproduct of our analysis, we formulate a Szegő-Akhiezer-Kac formula for the determinant of the Bessel operator with a Fisher-Hartwig singularity and develop a systematic approach to account for subleading power suppressed contributions.


2020 ◽  
Vol 5 (4) ◽  
pp. 65
Author(s):  
Andreas Bill ◽  
Vladimir Hizhnyakov ◽  
Reinhard K. Kremer ◽  
Götz Seibold ◽  
Aleksander Shelkan ◽  
...  

The microscopic mechanism of charge instabilities and the formation of inhomogeneous states in systems with strong electron correlations is investigated. We demonstrate that within a strong coupling expansion the single-band Hubbard model shows an instability towards phase separation and extend the approach also for an analysis of phase separation in the Hubbard-Kanamori hamiltonian as a prototypical multiband model. We study the pairing fluctuations on top of an inhomogeneous stripe state where superconducting correlations in the extended s-wave and d-wave channels correspond to (anti)bound states in the two-particle spectra. Whereas extended s-wave fluctuations are relevant on the scale of the local interaction parameter U, we find that d-wave fluctuations are pronounced in the energy range of the active subband which crosses the Fermi level. As a result, low energy spin and charge fluctuations can transfer the d-wave correlations from the bound states to the low energy quasiparticle bands. Our investigations therefore help to understand the coexistence of stripe correlations and d-wave superconductivity in cuprates.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Simone Giombi ◽  
Arkady A. Tseytlin

Abstract We revisit the problem of matching the strong coupling expansion of the $$ \frac{1}{2} $$ 1 2 BPS circular Wilson loops in $$ \mathcal{N} $$ N = 4 SYM and ABJM gauge theories with their string theory duals in AdS5× S5 and AdS4× CP3, at the first subleading (one-loop) order of the expansion around the minimal surface. We observe that, including the overall factor 1/gs of the inverse string coupling constant, as appropriate for the open string partition function with disk topology, and a universal prefactor proportional to the square root of the string tension T, both the SYM and ABJM results precisely match the string theory prediction. We provide an explanation of the origin of the $$ \sqrt{T} $$ T prefactor based on special features of the combination of one-loop determinants appearing in the string partition function. The latter also implies a natural generalization Zχ ∼ ($$ \sqrt{T}/{g}_{\mathrm{s}} $$ T / g s )χ to higher genus contributions with the Euler number χ, which is consistent with the structure of the 1/N corrections found on the gauge theory side.


2020 ◽  
Vol 35 (08) ◽  
pp. 2050041 ◽  
Author(s):  
Abouzeid M. Shalaby

In Phys. Rev. Lett. 115, 143001 (2015), H. Mera et al. developed a new simple but precise hypergeometric resummation technique. In this work, we suggest to obtain half of the parameters of the hypergeometric function from the strong-coupling expansion of the physical quantity. Since these parameters are taking now their exact values they can improve the precision of the technique for the whole range of the coupling values. The second order approximant [Formula: see text] of the algorithm is applied to resum the perturbation series of the ground state energy of the [Formula: see text]-symmetric [Formula: see text] field theory. It gives accurate results compared to exact calculations from the literature specially for very large coupling values. The [Formula: see text]-symmetry breaking of the Yang–Lee model has been investigated where third, fourth and fifth orders were able to get very accurate results when compared to other resummation methods involving [Formula: see text] orders. The critical exponent [Formula: see text] of the [Formula: see text]-symmetric model in three dimensions has been precisely obtained using only first order of perturbation series as input. The algorithm can be extended easily to accommodate any order of perturbation series in using the generalized hypergeometric function [Formula: see text] as it shares the same analytic properties with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document