High-dimensional quantum key agreement protocol with pairs of single qudits

2018 ◽  
Vol 16 (03) ◽  
pp. 1850024
Author(s):  
Jianhao He ◽  
Lvzhou Li ◽  
Yifan Huang ◽  
Haozhen Situ ◽  
Daowen Qiu

In this paper, we propose a high-dimensional quantum key agreement protocol where the key is encoded by pairs of single qudits which are chosen from d-level mutually unbiased bases. A security analysis is also given to show it is secure against most of the existing attacks. This protocol is useful in practice and has a higher information transmission ability because it uses high-dimensional quantum information carries.

2016 ◽  
Vol 30 (26) ◽  
pp. 1650332 ◽  
Author(s):  
Yefeng He ◽  
Wenping Ma

Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.


2017 ◽  
Vol 31 (10) ◽  
pp. 1750102 ◽  
Author(s):  
Binbin Cai ◽  
Gongde Guo ◽  
Song Lin

Based on the technique of quantum teleportation, a new multi-party quantum key agreement protocol is proposed. In this protocol, all users first share EPR pairs via public quantum channels. Afterwards, the states of signal particles can be transferred between two adjacent users by quantum teleportation. With the help of four unitary encoding operations, all users can encode their separate secret key into the traveling quantum states. In the end, all users can derive the final shared key synchronously. The security analysis shows that the presented protocol is secure against some common attacks and completely loss tolerant.


2019 ◽  
Vol 58 (5) ◽  
pp. 1659-1666 ◽  
Author(s):  
Hao-Nan Liu ◽  
Xiang-Qian Liang ◽  
Dong-Huan Jiang ◽  
Yong-Hua Zhang ◽  
Guang-Bao Xu

2019 ◽  
Vol 34 (40) ◽  
pp. 1950332
Author(s):  
Wei-Feng Cao ◽  
Yu-Guang Yang ◽  
Yi-Hua Zhou ◽  
Wei-Min Shi

We propose a new two-party quantum key agreement (QKA) protocol using five-qubit Brown states. One-way quantum transmission can be realized by merging Brown states and decoy photons randomly. The security of this protocol is shown to resist the outsider attack and participant attack over the ideal channel. Some methods are also proposed to ensure its security in noisy and lossy quantum channel. Finally, we generalize it and propose a multi-party QKA protocol based on Brown states.


Sign in / Sign up

Export Citation Format

Share Document