Collapse models tested in the LNGS underground laboratories

2019 ◽  
Vol 17 (08) ◽  
pp. 1941011
Author(s):  
Catalina Curceanu ◽  
Raffaele Del Grande ◽  
Matthias Laubenstein ◽  
Kristian Piscicchia

Collapse models consist in dynamical reformulations of the standard quantum mechanics aiming to solve the measurement problem. The standard Schrödinger dynamics is modified with the introduction of nonlinear and stochastic terms, which induce the wave function collapse in space. Collapse models predict slight deviations from the standard quantum mechanics predictions, in particular the emission of a “spontaneous radiation”, which we explored to set the most stringent limits on the collapse models parameters in a broad range. To this end, the X-ray emission data collected by the IGEX collaboration are analyzed and compared with the spectrum of the spontaneous photon emission process predicted by the theories. The results of the data analyses, and the ongoing experimental efforts will be presented.

Author(s):  
Kristian Piscicchia ◽  
Angelo Bassi ◽  
Catalina Curceanu ◽  
Raffaele Del Grande ◽  
Sandro Donadi ◽  
...  

In this paper new upper limits on the parameters of the Continuous Spontaneous Localization (CSL) collapse model are extracted. To this end the X-ray emission data collected by the IGEX collaboration are analyzed and compared with the spectrum of the spontaneous photon emission process predicted by collapse models. This study allows to obtain the most stringent limits within a relevant range of the CSL model parameters, with respect to any other method. The collapse rate $\lambda$ and the correlation length $r_C$ are mapped, thus allowing to exclude a broad range of the parameter space.


Author(s):  
Dirk-André Deckert ◽  
Leopold Kellers ◽  
Travis Norsen ◽  
Ward struyve

Bohmian mechanics is an alternative to standard quantum mechanics that does not suffer from the measurement problem. While it agrees with standard quantum mechanics concerning its experimental predictions, it offers novel types of approximations not suggested by the latter. Of particular interest are semi-classical approximations, where part of the system is treated classically. Bohmian semi-classical approximations have been explored before for systems without electromagnetic interactions. Here, the Rabi model is considered as a simple model involving light-matter interaction. This model describes a single mode electromagnetic field interacting with a two-level atom. As is well-known, the quantum treatment and the semi-classical treatment (where the field is treated classically rather than quantum mechanically) give qualitatively different results. We analyze the Rabi model using a different semi-classical approximation based on Bohmian mechanics. In this approximation, the back-reaction from the two-level atom onto the classical field is mediated by the Bohmian configuration of the two-level atom. We find that the Bohmian semi-classical approximation gives results comparable to the usual mean field one for the transition between ground and first excited state. Both semi-classical approximations tend to reproduce the collapse of the population inversion, but fail to reproduce the revival, which is characteristic of the full quantum description. Also an example of a higher excited state is presented where the Bohmian approximation does not perform so well.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740004 ◽  
Author(s):  
Catalina Curceanu ◽  
Diana Sirghi ◽  
Florin Sirghi ◽  
Sergio Bartalucci ◽  
Massimiliano Bazzi ◽  
...  

By performing X-ray measurements in the “cosmic silence” of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP) for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. X-ray emission can also be used to put strong constraints on the parameters of the Continuous Spontaneous Localization Model, which was introduced as a possible solution to the measurement problem in Quantum Mechanics. A Bayesian analysis of the data collected by IGEX will be presented, which allows to exclude a broad region of the parameter space which characterizes this model.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 4 introduces some of the major mysteries and interpretational issues of quantum mechanics (QM). These mysteries and issues include: quantum superposition, quantum nonlocality, Bell’s inequality, entanglement, delayed choice, the measurement problem, and the lack of counterfactual definiteness. All these mysteries and interpretational issues of QM result from dynamical explanation in the mechanical universe and are dispatched using the authors’ adynamical explanation in the block universe, called Relational Blockworld (RBW). A possible link between RBW and quantum information theory is provided. The metaphysical underpinnings of RBW, such as contextual emergence, spatiotemporal ontological contextuality, and adynamical global constraints, are provided in Philosophy of Physics for Chapter 4. That is also where RBW is situated with respect to retrocausal accounts and it is shown that RBW is a realist, psi-epistemic account of QM. All the relevant formalism for this chapter is provided in Foundational Physics for Chapter 4.


In a previous paper the absorption of γ-rays in the K-X-ray levels of the atom in which they are emitted was calculated according to the Quantum Mechanics, supposing the γ-rays to be emitted from a doublet of moment f ( t ) at the centre of the atom. The non-relativity wave equation derived from the relativity wave equation for an electron of charge — ε moving in an electro-magnetic field of vector potential K and scalar potential V is h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV + ih ε/μ c (K. grad)) ϕ = 0. (1) Suppose, however, that K involves the space co-ordinates. Then, (K. grad) ϕ ≠ (grad . K) ϕ , and the expression (K . grad) ϕ is not Hermitic. Equation (1) cannot therefore be the correct non-relativity wave equation for a single electron in an electron agnetic field, and we must substitute h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV) ϕ + ih ε/ c ((K. grad) ϕ + (grad. K) ϕ ) = 0. (2)


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Ovidiu Cristinel Stoica

2013 ◽  
Vol 38 (4) ◽  
pp. 443-470 ◽  
Author(s):  
Stephen Boughn ◽  
Marcel Reginatto

Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.


Sign in / Sign up

Export Citation Format

Share Document