scholarly journals INTERACTIVE DYNAMIC SIMULATOR FOR MULTIBODY SYSTEMS

2012 ◽  
Vol 09 (03) ◽  
pp. 1250021 ◽  
Author(s):  
JEAN-RÉMY CHARDONNET

We propose an interactive dynamic simulator for humanoid robots using constraint-based methods for computing interaction forces with friction. This simulator is a part of a general framework for prototyping called AMELIF and is a successful integration of physical models. We focus on optimizing the computation of the dynamics to obtain real-time simulations allowing multimodal interactivity. Our simulator has been validated in two ways: first by comparing real sensors' measures and simulated values, then through different scenarios of complex manipulation tasks on the HRP-2 humanoid robot, bringing new insights to interactive robotics.

2015 ◽  
Vol 799-800 ◽  
pp. 1045-1048
Author(s):  
Lu Ping Luo ◽  
Chao Yuan ◽  
Gang Xue ◽  
Mei Zhi Yang ◽  
Xue Wei Zhang

An approach of energy minimization in humanoid robots is proposed in our paper. The techniques of dynamic power management method and real-time scheduling method are combined to be used in the humanoid robots. The common components of humanoid robots are motors, sensors, computers and controllers and so on which are electronic systems, and humanoid robots are real-time systems. Therefore, the dynamic power management method is used to dynamically adjust power state of components adaptive to the task’s need to reduce energy consumption, and the real-time scheduling method is applied to schedule multiple tasks and meet the deadlines. Through simulation of the humanoid robot developed by our lab, the feasibility of our method is proved.


2006 ◽  
Vol 03 (01) ◽  
pp. 1-19 ◽  
Author(s):  
KENSUKE HARADA ◽  
SHUUJI KAJITA ◽  
KENJI KANEKO ◽  
HIROHISA HIRUKAWA

This paper studies real-time gait planning for a humanoid robot. By simultaneously planning the trajectories of the COG (Center of Gravity) and the ZMP (Zero Moment Point), a fast and smooth change of gait can be realized. The change of gait is also realized by connecting the newly calculated trajectories to the current ones. While we propose two methods for connecting two trajectories, i.e. the real-time method and the quasi-real-time one, we show that a stable change of gait can be realized by using the quasi-real-time method even if the change of the step position is significant. The effectiveness of the proposed methods are confirmed by simulation and experiment.


Author(s):  
Serge Sutulo ◽  
C. Guedes Soares

A code for simulating hydrodynamic interaction forces in manoeuvring simulating systems has been created. The algorithm takes into account potential forces only and is based on the Hess and Smith panel method. Own inertial hydrodynamic forces were estimated through pre-calculation of the added masses followed by use of the Thomson–Tait–Kirchhoff equations. Comparative computations of the added masses, surge and sway interaction forces and yaw interaction moments with varying number of surface computational panels showed that on a typical modern PC, an acceptable accuracy in terms of the integrated loads can be reached with a relatively small number of panels permitting real-time simulations with the developed algorithm in the loop. Importance of the account for the local time derivative of the potential has been demonstrated on comparative calculations in simulation of a passing-by manoeuvre. The code can be used for predicting interaction loads with any number of moving objects and fixed obstacles.


2013 ◽  
Vol 284-287 ◽  
pp. 1914-1918
Author(s):  
Jacky Baltes ◽  
Chi Tai Cheng ◽  
Meng Cheng Lau ◽  
Andrés Espínola

This paper presents a practical real-time visual navigation system, including a vision system, a particle filter (PF) based localization system, and a path planning system, for humanoid robots in an indoor environment. A neural network (NN) converter system is used to solve the image distortion problem. The monocular vision system detects objects of interest in the scene, calculating their position in the image, and converting the position in the image to real world coordinates. The PF localization system estimates the current position by the robot’s motion model and corrects the estimated position by using feedback from the data gathered by the vision system. The path planning system determines the next motion based on the result of the localization system. This paper uses a tree-like path planning method which not only guides the robot to the destination but also avoids obstacles at the same time. The navigation method allows a user to assign several different target destinations to the robot simultaneously. The proposed method is implemented on a humanoid robot “ROBOTIS DARwIn-OP”, an open platform humanoid robot. The effectiveness of the system is demonstrated in an empirical evaluation.


Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


2010 ◽  
Vol 07 (01) ◽  
pp. 157-182 ◽  
Author(s):  
HAO GU ◽  
MARCO CECCARELLI ◽  
GIUSEPPE CARBONE

In this paper, problems for an anthropomorphic robot arm are approached for an application in a humanoid robot with the specific features of cost oriented design and user-friendly operation. One DOF solution is proposed by using a suitable combination of gearing systems, clutches, and linkages. Models and dynamic simulations are used both for designing the system and checking the operation feasibility.


2020 ◽  
pp. 1-17
Author(s):  
T. Rogošić ◽  
B. Juričić ◽  
F. Aybek Çetek ◽  
Z. Kaplan

ABSTRACT Air traffic controller training is highly regulated but lacks prescribed common assessment criteria and methods to evaluate trainees at the level of basic training and consideration of how trainees in fluence flight efficiency. We investigated whether there is a correlation between two parameters, viz. the trainees’ assessment score and fuel consumption, obtained and calculated after real-time human-in-the-loop radar simulations within the ATCOSIMA project. Although basic training assessment standards emphasise safety indicators, it was expected that trainees with higher assessment scores would achieve better flight efficiency, i.e. less fuel consumption. However, the results showed that trainees’ assessment scores and fuel consumption did not correlate in the expected way, leading to several conclusions.


SIMULATION ◽  
2021 ◽  
pp. 003754972110216
Author(s):  
Zhang Lei ◽  
Li Jie ◽  
Wang Menglu ◽  
Liu Mengya

Simulating a physical system in real-time is widely used in equipment design, test, and validation. Though an implicit multistep numerical method excels at solving physical models that are usually composed of stiff ordinary differential equations, it is not suitable for real-time simulation because of state discontinuity and massive iterations for root finding. Thus, a method based on the backward differential formula is presented. It divides the main fixed step of real-time simulation into limited minor steps according to computing cost and accuracy demand. By analyzing and testing its capability, this method shows advantage and efficiency in real-time simulation, especially when the system contains stiff equations. A simulation application will have more flexibility while using this method.


Sign in / Sign up

Export Citation Format

Share Document