scholarly journals A COMPARISON OF THE EFFECTIVENESS OF USING THE MESHLESS METHOD AND THE FINITE DIFFERENCE METHOD IN GEOSTATISTICAL ANALYSIS OF TRANSPORT MODELING

2005 ◽  
Vol 02 (02) ◽  
pp. 149-166 ◽  
Author(s):  
LEOPOLD VRANKAR ◽  
GORAN TURK ◽  
FRANC RUNOVC

Disposal of radioactive waste in geological formations is a great concern with regards to nuclear safety. The general reliability and accuracy of transport modeling depends predominantly on input data such as hydraulic conductivity, water velocity, radioactive inventory, and hydrodynamic dispersion. The most important input data are obtained from field measurements, but they are not always available. One way to study the spatial variability of hydraulic conductivity is geostatistics. The numerical solution of partial differential equations (PDEs) has usually been obtained by finite difference methods (FDM), finite element methods (FEM), or finite volume methods (FVM). These methods require a mesh to support the localized approximations. The multiquadric (MQ) radial basis function method is a recent meshless collocation method with global basis functions. Solving PDEs using radial basis function (RBF) collocations is an attractive alternative to these traditional methods because no tedious mesh generation is required. We compare the meshless method, which uses radial basis functions, with the traditional finite difference scheme. In our case we determine the average and standard deviation of radionuclide concentration with regard to spatial variability of hydraulic conductivity that was modeled by a geostatistical approach.

2020 ◽  
Vol 20 (4) ◽  
pp. 60-83
Author(s):  
Vinícius Magalhães Pinto Marques ◽  
Gisele Tessari Santos ◽  
Mauri Fortes

ABSTRACTObjective: This article aims to solve the non-linear Black Scholes (BS) equation for European call options using Radial Basis Function (RBF) Multi-Quadratic (MQ) Method.Methodology / Approach: This work uses the MQ RBF method applied to the solution of two complex models of nonlinear BS equation for prices of European call options with modified volatility. Linear BS models are also solved to visualize the effects of modified volatility.  Additionally, an adaptive scheme is implemented in time based on the Runge-Kutta-Fehlberg (RKF) method.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
J. Zhang ◽  
F. Z. Wang ◽  
E. R. Hou

The performance of the parameter-free conical radial basis functions accompanied with the Chebyshev node generation is investigated for the solution of boundary value problems. In contrast to the traditional conical radial basis function method, where the collocation points are placed uniformly or quasi-uniformly in the physical domain of the boundary value problems in question, we consider three different Chebyshev-type schemes to generate the collocation points. This simple scheme improves accuracy of the method with no additional computational cost. Several numerical experiments are given to show the validity of the newly proposed method.


2013 ◽  
Vol 4 (1) ◽  
pp. 56-80 ◽  
Author(s):  
Ch. Sanjeev Kumar Dash ◽  
Ajit Kumar Behera ◽  
Satchidananda Dehuri ◽  
Sung-Bae Cho

In this paper a two phases learning algorithm with a modified kernel for radial basis function neural networks is proposed for classification. In phase one a new meta-heuristic approach differential evolution is used to reveal the parameters of the modified kernel. The second phase focuses on optimization of weights for learning the networks. Further, a predefined set of basis functions is taken for empirical analysis of which basis function is better for which kind of domain. The simulation result shows that the proposed learning mechanism is evidently producing better classification accuracy vis-à-vis radial basis function neural networks (RBFNs) and genetic algorithm-radial basis function (GA-RBF) neural networks.


Author(s):  
Lanling Ding ◽  
Zhiyong Liu ◽  
Qiuyan Xu

The radial basis functions meshfree method is a research method for thin plate problem which has gradually developed into a more mature meshfree method. It includes finite element, radial basis functions meshfree collocation method, etc. In this paper, we introduce the multilevel radial basis function collocation method for the fourth-order thin plate problem. We use nonsymmetric Kansa multilevel radial basis function collocation method to solve the fourth-order thin plate problem. Two numerical examples based on Wendland’s [Formula: see text] and [Formula: see text] functions are given to examine that the convergence of the multilevel radial basis function collocation method which is good for solving the fourth-order thin plate problem.


Sign in / Sign up

Export Citation Format

Share Document