DATA GATHERING AND COMMUNICATION FOR WIRELESS SENSOR NETWORKS — A CENTRALIZED APPROACH

2005 ◽  
Vol 02 (04) ◽  
pp. 267-278 ◽  
Author(s):  
PETER X. LIU ◽  
NANCY DING

This paper introduces a centralized approach to data gathering and communication for wireless sensor networks. Inspired by the social behaviors of natural ants, we clearly partition the task for the base station and sensor nodes in a wireless sensor network according to their different functions and capabilities. An ant colony optimization method is employed at the base station to form a near-optimal chain for sensor nodes to transmit collected data. Sensor nodes in the network then form a bi-direction chain structure, which is self-adaptive to any minor changes of the network topology. The simulation results show that the developed algorithm, which we call AntChain algorithm, performs much better than many other protocols in terms of energy efficiency, data integrity and life time when the base station is near where the sensor nodes are deployed.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Oday Jerew ◽  
Nizar Al Bassam

Recent research shows that significant energy saving can be achieved in wireless sensor networks by using mobile devices. A mobile device roams sensing fields and collects data from sensors through a short transmission range. Multihop communication is used to improve data gathering by reducing the tour length of the mobile device. In this paper we study the trade-off between energy saving and data gathering latency in wireless sensor networks. In particular, we examine the balance between the relay hop count and the tour length of a mobile Base Station (BS). We propose two heuristic algorithms, Adjacent Tree-Bounded Hop Algorithm (AT-BHA) and Farthest Node First-Bounded Hop Algorithm (FNF-BHA), to reduce energy consumption of sensor nodes. The proposed algorithms select groups of Collection Trees (CTs) and a subset of Collection Location (CL) sensor nodes to buffer and forward data to the mobile BS when it arrives. Each CL node receives sensing data from its CT nodes within bounded hop count. Extensive experiments by simulation are conducted to evaluate the performance of the proposed algorithms against another heuristic. We demonstrate that the proposed algorithms outperform the existing work with the mean of the length of mobile BS tour.


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Subramaniam Sumithra ◽  
T. Aruldoss Albert Victoire

Due to large dimension of clusters and increasing size of sensor nodes, finding the optimal route and cluster for large wireless sensor networks (WSN) seems to be highly complex and cumbersome. This paper proposes a new method to determine a reasonably better solution of the clustering and routing problem with the highest concern of efficient energy consumption of the sensor nodes for extending network life time. The proposed method is based on the Differential Evolution (DE) algorithm with an improvised search operator called Diversified Vicinity Procedure (DVP), which models a trade-off between energy consumption of the cluster heads and delay in forwarding the data packets. The obtained route using the proposed method from all the gateways to the base station is comparatively lesser in overall distance with less number of data forwards. Extensive numerical experiments demonstrate the superiority of the proposed method in managing energy consumption of the WSN and the results are compared with the other algorithms reported in the literature.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 161
Author(s):  
P Balamurugan ◽  
M Shyamala Devi ◽  
V Sharmila

In wireless sensor networks, Sensor nodes are arranged randomly in unkind physical surroundings to collect data and distribute the data to the remote base station. However the sensor nodes have to preserve the power source that has restricted estimation competence. The sensed information is difficult to be transmitted over the sensor network for a long period of time in an energy efficient manner.  In this paper, it finds the problem of communication data between sink nodes and remote data sources via intermediate nodes in sensor field. So this paper proposes a score based data gathering algorithm in wireless sensor networks. The high-level contribution of this study is the enhancement of a score- based data gathering algorithm and the impact of energy entity for Wireless Sensor Networks.  Then the energy and delay of data gathering are evaluated. Unlike PEGASIS and LEACH, the delay for every process of data gathering is considerably lower when SBDG is employed.  The energy consumed per round of data gathering for both SBDG and EE-SBDG is less than half of that incurred with PEGASIS and LEACH. Compared with LEACH and PEGASIS, SBDG and EE-SBDG are fair with node usage because of the scoring system and residual energy respectively.  Overall, the Score-based data gathering algorithm provides a significant solution to maximize the network lifetime as well as minimum delay per round of data gathering.


Author(s):  
Muhsin J. Al-Amery ◽  
Mohammed H. Ghadban

There is no doubt that the most challenging aspect in the wireless sensor networks (WSN) is the lifetime, due to limitations in their energy. WSN depends on a specific group of sensor nodes to gather the data from other nodes and forward it to the base station (BS). These nodes are called cluster heads. Having reliable cluster head’s (CH) means longer life to the network. In this paper, a versatile calculation has been acquainted and analyzed for selecting the CH that maintains the least vitality utilization in the network with appropriate life time during every correspondence round. The altered methodology depends on the improved calendar of the time division multiple access (TDMA) plans. This methodology is created to decide the next CH based on lifetime, expended vitality, number of CH’s, and the frequent contact to the BS. A comparative analysis is introduced, the proposed algorithm assistant cluster heads (ACHS) shows energizing outcomes in vitality utilization in WSNs just as expanding the general system dependability with reasonable viability and productivity in terms of lifetime. The ACHS strategy shows a decrease in the WSN vitality utilization up to about 25% and shows an expansion in the system life time by 30% than the upgraded timetable of time TDMA plan approach.


Author(s):  
Syed Umar ◽  
P.V.R. D Prasada Rao ◽  
Sridevi Gutta

Today the wireless sensor networks (WSN) play a crucial role in wireless technology in various domains like military, medicine, communications etc. The energy conservation is the crucial factor in the WSN. The WSN is a system which has more number of nodes in which various sensors are fabricated on the nodes to monitor various factors of the given task. These nodes will form a network by connecting the one to other for the effective communication between the nodes, and sends the whole information to the base station (BS). As the nodes which we use for the WSN are of low cost and are battery operated. The main drawback is replacement of the battery in the WSN. The main goal is to conserve the energy consumption in WSN and also to balance the load on WSN. For this many protocols are designed like LEACH, PEGASIS, PEDAP, etc. in those balancing the load and time delayed. some drawbacks are there. So we proposed a protocol so called “Tree Based Energy Balancing routing Protocol by Self Organizing” (TEBRSO), in which instead of routing tables a routing tree will be used for routing from nodes to base station (BS), which chooses one root/control node for the broadcasting messages to the selected sensor nodes. By this protocol we can save the energy consumption in WSN and can extend the life time of it. The performance of this protocol is better when we compare with other energy saving protocols.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Sign in / Sign up

Export Citation Format

Share Document