scholarly journals HERMITIAN VECTOR FIELDS AND SPECIAL PHASE FUNCTIONS

2006 ◽  
Vol 03 (04) ◽  
pp. 719-754 ◽  
Author(s):  
JOSEF JANYŠKA ◽  
MARCO MODUGNO

We start by analyzing the Lie algebra of Hermitian vector fields of a Hermitian line bundle. Then, we specify the base space of the above bundle by considering a Galilei, or an Einstein spacetime. Namely, in the first case, we consider, a fibred manifold over absolute time equipped with a spacelike Riemannian metric, a spacetime connection (preserving the time fibring and the spacelike metric) and an electromagnetic field. In the second case, we consider a spacetime equipped with a Lorentzian metric and an electromagnetic field. In both cases, we exhibit a natural Lie algebra of special phase functions and show that the Lie algebra of Hermitian vector fields turns out to be naturally isomorphic to the Lie algebra of special phase functions. Eventually, we compare the Galilei and Einstein cases.

2010 ◽  
Vol 07 (04) ◽  
pp. 599-623 ◽  
Author(s):  
DANIEL CANARUTTO

In the context of Covariant Quantum Mechanics for a spin particle, we classify the "quantum vector fields", i.e. the projectable Hermitian vector fields of a complex bundle of complex dimension 2 over spacetime. Indeed, we prove that the Lie algebra of quantum vector fields is naturally isomorphic to a certain Lie algebra of functions of the classical phase space, called "special phase functions". This result provides a covariant procedure to achieve the quantum operators generated by the quantum vector fields and the corresponding observables described by the special phase functions.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


2019 ◽  
Vol 223 (8) ◽  
pp. 3581-3593 ◽  
Author(s):  
Yuly Billig ◽  
Jonathan Nilsson
Keyword(s):  

2018 ◽  
Vol 38 (1) ◽  
pp. 74-82
Author(s):  
Edgar García-Morantes ◽  
Iván Amaya-Contreras ◽  
Rodrigo Correa-Cely

This work considers the estimation of internal volumetric heat generation, as well as the heat capacity of a solid spherical sample, heated by a homogeneous, time-varying electromagnetic field. To that end, the numerical strategy solves the corresponding inverse problem. Three functional forms (linear, sinusoidal, and exponential) for the electromagnetic field were considered. White Gaussian noise was incorporated into the theoretical temperature profile (i.e. the solution of the direct problem) to simulate a more realistic situation. Temperature was pretended to be read through four sensors. The inverse problem was solved through three different kinds of approach: using a traditional optimizer, using modern techniques, and using a mixture of both. In the first case, we used a traditional, deterministic Levenberg-Marquardt (LM) algorithm. In the second one, we considered three stochastic algorithms: Spiral Optimization Algorithm (SOA), Vortex Search (VS), and Weighted Attraction Method (WAM). In the final case, we proposed a hybrid between LM and the metaheuristics algorithms. Results show that LM converges to the expected solutions only if the initial conditions (IC) are within a limited range. Oppositely, metaheuristics converge in a wide range of IC but exhibit low accuracy. The hybrid approaches converge and improve the accuracy obtained with the metaheuristics. The difference between expected and obtained values, as well as the RMS errors, are reported and compared for all three methods.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter provides constructions of Lagrangians for various field models and discusses the basic properties of these models. Concrete examples of field models are constructed, including real and complex scalar field models, the sigma model, spinor field models and models of massless and massive free vector fields. In addition, the chapter discusses various interactions between fields, including the interactions of scalars and spinors with the electromagnetic field. A detailed discussion of the Yang-Mills field is given as well.


Sign in / Sign up

Export Citation Format

Share Document