scholarly journals ON GENERALIZED NONHOLONOMIC CHAPLYGIN SPHERE PROBLEM

2013 ◽  
Vol 10 (06) ◽  
pp. 1320008 ◽  
Author(s):  
A. V. TSIGANOV

We discuss linear in momenta Poisson structure for the generalized nonholonomic Chaplygin sphere problem and prove that it is nontrivial deformation of the canonical Poisson structure on e*(3).

2006 ◽  
Vol 84 (10) ◽  
pp. 891-904
Author(s):  
J R Schmidt

The Kahler geometry of minimal coadjoint orbits of classical Lie groups is exploited to construct Darboux coordinates, a symplectic two-form and a Lie–Poisson structure on the dual of the Lie algebra. Canonical transformations cast the generators of the dual into Dyson or Holstein–Primakoff representations.PACS Nos.: 02.20.Sv, 02.30.Ik, 02.40.Tt


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Camelia Pop

A controllable drift-free system on the Lie group G=SO(3)×R3×R3 is considered. The dynamics and geometrical properties of the corresponding reduced Hamilton’s equations on g∗,·,·- are studied, where ·,·- is the minus Lie-Poisson structure on the dual space g∗ of the Lie algebra g=so(3)×R3×R3 of G. The numerical integration of this system is also discussed.


1995 ◽  
Vol 2 (4) ◽  
pp. 347-359
Author(s):  
Z. Giunashvili

Abstract The purpose of this paper is to consider certain mechanisms of the emergence of Poisson structures on a manifold. We shall also establish some properties of the bivector field that defines a Poisson structure and investigate geometrical structures on the manifold induced by such fields. Further, we shall touch upon the dualism between bivector fields and differential 2-forms.


2009 ◽  
Author(s):  
R. Léandre ◽  
Piotr Kielanowski ◽  
S. Twareque Ali ◽  
Anatol Odzijewicz ◽  
Martin Schlichenmaier ◽  
...  

Author(s):  
Shahn Majid ◽  
◽  
Liam Williams ◽  

We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space X is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson-Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the q-Hopf fibration on the standard q-sphere. We also construct the Poisson level of the spin connection on a principal bundle.


1990 ◽  
Vol 05 (23) ◽  
pp. 4477-4488 ◽  
Author(s):  
J. AVAN ◽  
M. TALON

Neumann’s model, describing the motion of a particle on an N-sphere under harmonic forces, is studied from the point of view of classical and quantum integrability. Classical integrability is derived from a generalized structure, “R-S couple” or “D-matrix” for the Poisson brackets of the Lax operator. The already-known set of conserved quantities for this model turns out to follow straightforwardly from this structure. It gives rise to a set of commuting operators at the quantum level, and the algebra of Lax operators directly follows from the classical one.


2014 ◽  
Vol 6 (01) ◽  
pp. 87-106
Author(s):  
Xueyang Li ◽  
Aiguo Xiao ◽  
Dongling Wang

AbstractThe generating function methods have been applied successfully to generalized Hamiltonian systems with constant or invertible Poisson-structure matrices. In this paper, we extend these results and present the generating function methods preserving the Poisson structures for generalized Hamiltonian systems with general variable Poisson-structure matrices. In particular, some obtained Poisson schemes are applied efficiently to some dynamical systems which can be written into generalized Hamiltonian systems (such as generalized Lotka-Volterra systems, Robbins equations and so on).


2017 ◽  
Vol 9 (4) ◽  
pp. 209
Author(s):  
Joseph Dongho ◽  
Alphonse Mbah ◽  
Shuntah Roland Yotcha

We define the notion of logarithmic Poisson structure along a non zero ideal $\cali$ of an associative, commutative algebra $\cal A$ and prove that each logarithmic Poisson structure induce a skew symmetric 2-form and a Lie-Rinehart structure on the $\cal A$-module $\Omega_K(\log \cali)$ of logarithmic K\"{a}hler differential. This Lie-Rinehart structure define a representation of the underline Lie algebra. Applying the machinery of Chevaley-Eilenberg and Palais, we define the notion of logarithmic Poisson cohomology which is a measure obstructions of Linear representation of the underline Lie algebra for which the grown ring act by multiplication.


2020 ◽  
Vol 405 ◽  
pp. 109172
Author(s):  
Yingzhe Li ◽  
Yajuan Sun ◽  
Nicolas Crouseilles

Sign in / Sign up

Export Citation Format

Share Document